Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D., and Rubin, R.A. 2011. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol.
11, 22.
PubMed
PubMed Central
Article
Google Scholar
Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., and Kunugi, H. 2016. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord.
202, 254–257.
PubMed
Article
Google Scholar
Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O.R., Hamidi, G.A., and Salami, M. 2016. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci.
8, 256.
PubMed
PubMed Central
Article
CAS
Google Scholar
Bailey, M.T. and Coe, C.L. 1999. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol.
35, 146–155.
CAS
PubMed
Article
Google Scholar
Bailey, M.T., Dowd, S.E., Galley, J.D., Hufnagle, A.R., Allen, R.G., and Lyte, M. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun.
25, 397–407.
CAS
PubMed
Article
Google Scholar
Bailey, M.T., Dowd, S.E., Parry, N.M., Galley, J.D., Schauer, D.B., and Lyte, M. 2010. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect. Immun.
78, 1509–1519.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bailey, M.T., Lubach, G.R., and Coe, C.L. 2004. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J. Pediatr. Gastroenterol. Nutr.
38, 414–421.
PubMed
Article
Google Scholar
Banks, W.A. 2005. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharm. Des.
11, 973–984.
CAS
PubMed
Article
Google Scholar
Barrett, E., Ross, R.P., O’Toole, P.W., Fitzgerald, G.F., and Stanton, C. 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol.
113, 411–417.
CAS
PubMed
Article
Google Scholar
Bengmark, S. 2013. Gut microbiota, immune development and function. Pharmacol. Res.
69, 87–113.
CAS
PubMed
Article
Google Scholar
Benton, D., Williams, C., and Brown, A. 2007. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr.
61, 355–361.
CAS
PubMed
Article
Google Scholar
Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., Macri, J., McCoy, K.D., et al. 2011a. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology
141, 599–609.
CAS
PubMed
Article
Google Scholar
Bercik, P., Park, A.J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P.A., Fahnestock, M., Moine, D., et al. 2011b. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil.
23, 1132–1139.
CAS
PubMed
PubMed Central
Article
Google Scholar
Berer, K. and Krishnamoorthy, G. 2012. Commensal gut flora and brain autoimmunity: A love or hate affair? Acta Neuropathol.
123, 639–651.
CAS
PubMed
Article
Google Scholar
Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S., Gomez-Llorente, C., and Gil, A. 2012. Probiotic mechanisms of action. Ann. Nutr. Metab.
61, 160–174.
CAS
PubMed
Article
Google Scholar
Boursi, B., Mamtani, R., Haynes, K., and Yang, Y.X. 2016. Parkinson’s disease and colorectal cancer risk-A nested case control study. Cancer Epidemiol.
43, 9–14.
PubMed
PubMed Central
Article
Google Scholar
Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA
108, 16050–16055.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bravo, J.A., Julio-Pieper, M., Forsythe, P., Kunze, W., Dinan, T.G., Bienenstock, J., and Cryan, J.F. 2012. Communication between gastrointestinal bacteria and the nervous system. Curr. Opin. Pharmacol.
12, 667–672.
CAS
PubMed
Article
Google Scholar
Browning, K.N., Verheijden, S., and Boeckxstaens, G.E. 2017. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology
152, 730–744.
PubMed
Article
Google Scholar
Bu, X.L., Yao, X.Q., Jiao, S.S., Zeng, F., Liu, Y.H., Xiang, Y., Liang, C.R., Wang, Q.H., Wang, X., Cao, H.Y., et al. 2015. A study on the association between infectious burden and Alzheimer’s disease. Eur. J. Neurol.
22, 1519–1525.
PubMed
Article
Google Scholar
Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. 2015. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann.Gastroenterol.
28, 203–209.
PubMed
PubMed Central
Google Scholar
Cassani, E., Barichella, M., Cancello, R., Cavanna, F., Iorio, L., Cereda, E., Bolliri, C., Zampella Maria, P., Bianchi, F., Cestaro, B., et al. 2015. Increased urinary indoxyl sulfate (indican): New insights into gut dysbiosis in Parkinson’s disease. Parkinsonism. Relat. Disord.
21, 389–393.
PubMed
Article
Google Scholar
Cassani, E., Privitera, G., Pezzoli, G., Pusani, C., Madio, C., Iorio, L., and Barichella, M. 2011. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol. Dietol.
57, 117–121.
CAS
PubMed
Google Scholar
Choi, H.J., Lee, N.K., and Paik, H.D. 2015. Health benefits of lactic acid bacteria isolated from kimchi, with respect to immunomodulatory effects. Food Sci. Biotechnol.
24, 783–789.
Article
Google Scholar
Clarke, M.B., Hughes, D.T., Zhu, C., Boedeker, E.C., and Sperandio, V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc. Natl. Acad. Sci. USA
103, 10420–10425.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cohen, L.J., Esterhazy, D., Kim, S.H., Lemetre, C., Aguilar, R.R., Gordon, E.A., Pickard, A.J., Cross, J.R., Emiliano, A.B., Han, S.M., et al. 2017. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature
549, 48–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Coury, D.L., Ashwood, P., Fasano, A., Fuchs, G., Geraghty, M., Kaul, A., Mawe, G., Patterson, P., and Jones, N.E. 2012. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics
130 Suppl 2, S160–S168.
PubMed
Article
Google Scholar
Cryan, J.F. and Dinan, T.G. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci.
13, 701–712.
CAS
PubMed
Article
Google Scholar
De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D.I., Cristofori, F., Guerzoni, M.E., Gobbetti, M., and Francavilla, R. 2013. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One
8, e76993.
PubMed
PubMed Central
Article
CAS
Google Scholar
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. 2008. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res.
43, 164–174.
PubMed
Article
Google Scholar
Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J.F., and Dinan, T.G. 2010. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience
170, 1179–1188.
CAS
PubMed
Article
Google Scholar
Deshmukh, H.S., Liu, Y., Menkiti, O.R., Mei, J., Dai, N., O’Leary, C.E., Oliver, P.M., Kolls, J.K., Weiser, J.N., and Worthen, G.S. 2014. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med.
20, 524–530.
CAS
PubMed
PubMed Central
Article
Google Scholar
Diamond, B., Huerta, P.T., Tracey, K., and Volpe, B.T. 2011. It takes guts to grow a brain: Increasing evidence of the important role of the intestinal microflora in neuro-and immune-modulatory functions during development and adulthood. Bioessays
33, 588–591.
CAS
PubMed
PubMed Central
Article
Google Scholar
Donato, K.A., Gareau, M.G., Wang, Y.J., and Sherman, P.M. 2010. Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-a-induced barrier dysfunction and pro-inflammatory signalling. Microbiology
156, 3288–3297.
CAS
PubMed
Article
Google Scholar
Emery, D.C., Shoemark, D.K., Batstone, T.E., Waterfall, C.M., Coghill, J.A., Cerajewska, T.L., Davies, M., West, N.X., and Allen, S.J. 2017. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front. Aging Neurosci.
9, 195.
PubMed
PubMed Central
Article
Google Scholar
Erny, D., de Angelis, A.L.H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., and Buch, T. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci.
18, 965–977.
CAS
PubMed
PubMed Central
Article
Google Scholar
Felger, J.C. and Lotrich, F.E. 2013. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience
246, 199–229.
CAS
PubMed
Article
Google Scholar
Finegold, S.M., Dowd, S.E., Gontcharova, V., Liu, C., Henley, K.E., Wolcott, R.D., Youn, E., Summanen, P.H., Granpeesheh, D., Dixon, D., et al. 2010. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe
16, 444–453.
CAS
PubMed
Article
Google Scholar
Forsyth, C.B., Shannon, K.M., Kordower, J.H., Voigt, R.M., Shaikh, M., Jaglin, J.A., Estes, J.D., Dodiya, H.B., and Keshavarzian, A. 2011. Increased intestinal permeability correlates with sigmoid mucosa a-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One
6, e28032.
CAS
PubMed
PubMed Central
Article
Google Scholar
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun.
5, 3611.
CAS
PubMed
Article
Google Scholar
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature
504, 446–450.
CAS
PubMed
Article
Google Scholar
Gagliano, H., Delgado-Morales, R., Sanz-Garcia, A., and Armario, A. 2014. High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology
79, 75–82.
CAS
PubMed
Article
Google Scholar
Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. 2006. Metagenomic analysis of the human distal gut microbiome. Science
312, 1355–1359.
CAS
PubMed
PubMed Central
Article
Google Scholar
Goehler, L.E., Park, S.M., Opitz, N., Lyte, M., and Gaykema, R.P. 2008. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun.
22, 354–366.
CAS
PubMed
Article
Google Scholar
Goldstone, A.P. 2006. The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog. Brain Res.
153, 57–73.
CAS
PubMed
Article
Google Scholar
Golubeva, A.V., Crampton, S., Desbonnet, L., Edge, D., O’Sullivan, O., Lomasney, K.W., Zhdanov, A.V., Crispie, F., Moloney, R.D., Borre, Y.E., et al. 2015. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology
60, 58–74.
PubMed
Article
Google Scholar
Grenham, S., Clarke, G., Cryan, J.F., and Dinan, T.G. 2011. Brain-gutmicrobe communication in health and disease. Front. Physiol.
2, 94.
PubMed
PubMed Central
Article
Google Scholar
Grossi, E., Melli, S., Dunca, D., and Terruzzi, V. 2016. Unexpected improvement in core autism spectrum disorder symptoms after long-term treatment with probiotics. SAGE Open Med. Case Rep.
4, 2050313x16666231.
Google Scholar
Guthrie, G.D. and Nicholson-Guthrie, C.S. 1989. γ-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics. Proc. Natl. Acad. Sci. USA
86, 7378–7381.
CAS
PubMed
PubMed Central
Article
Google Scholar
Harach, T., Marungruang, N., Duthilleul, N., Cheatham, V., Mc Coy, K.D., Frisoni, G., Neher, J.J., Fak, F., Jucker, M., Lasser, T., et al. 2017. Reduction of Aβ amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep.
7, 41802.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hardy, J. and Selkoe, D.J. 2002. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science
297, 353–356.
CAS
PubMed
Article
Google Scholar
Hemarajata, P., Gao, C., Pflughoeft, K.J., Thomas, C.M., Saulnier, D.M., Spinler, J.K., and Versalovic, J. 2013. Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri. J. Bacteriol.
195, 5567–5576.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., et al. 2014. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol.
11, 506–514.
PubMed
Google Scholar
Holzer, P. and Farzi, A. 2014. Neuropeptides and the microbiotagut-brain axis. Adv. Exp. Med. Biol.
817, 195–219.
CAS
PubMed
PubMed Central
Article
Google Scholar
Horn, T. and Klein, J. 2013. Neuroprotective effects of lactate in brain ischemia: dependence on anesthetic drugs. Neurochem. Int.
62, 251–257.
CAS
PubMed
Article
Google Scholar
Hosoi, T., Okuma, Y., and Nomura, Y. 2002. The mechanisms of immune-to-brain communication in inflammation as a drug target. Curr. Drug Targets Inflamm. Allergy
1, 257–262.
CAS
PubMed
Article
Google Scholar
Hsiao, E.Y., McBride, S.W., Hsien, S., Sharon, G., Hyde, E.R., McCue, T., Codelli, J.A., Chow, J., Reisman, S.E., Petrosino, J.F., et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell
155, 1451–1463.
CAS
PubMed
PubMed Central
Article
Google Scholar
Inan, M.S., Rasoulpour, R.J., Yin, L., Hubbard, A.K., Rosenberg, D.W., and Giardina, C. 2000. The luminal short-chain fatty acid butyrate modulates NF-kB activity in a human colonic epithelial cell line. Gastroenterology
118, 724–734.
CAS
PubMed
Article
Google Scholar
Janik, R., Thomason, L.A.M., Stanisz, A.M., Forsythe, P., Bienenstock, J., and Stanisz, G.J. 2016. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage
125, 988–995.
CAS
PubMed
Article
Google Scholar
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., et al. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun.
48, 186–194.
PubMed
Article
Google Scholar
Kabouridis, P.S., Lasrado, R., McCallum, S., Chng, S.H., Snippert, H.J., Clevers, H., Pettersson, S., and Pachnis, V. 2015. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron
85, 289–295.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kaluzna-Czaplinska, J. and Blaszczyk, S. 2012. The level of arabinitol in autistic children after probiotic therapy. Nutrition
28, 124–126.
CAS
PubMed
Article
Google Scholar
Kang, D.W., Park, J.G., Ilhan, Z.E., Wallstrom, G., Labaer, J., Adams, J.B., and Krajmalnik-Brown, R. 2013. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One
8, e68322.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kato-Kataoka, A., Nishida, K., Takada, M., Kawai, M., Kikuchi-Hayakawa, H., Suda, K., Ishikawa, H., Gondo, Y., Shimizu, K., Matsuki, T., et al. 2016. Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl. Environ. Microbiol.
82, 3649–3658.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kawashima, K., Misawa, H., Moriwaki, Y., Fujii, Y.X., Fujii, T., Horiuchi, Y., Yamada, T., Imanaka, T., and Kamekura, M. 2007. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci.
80, 2206–2209.
CAS
PubMed
Article
Google Scholar
Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E., and Shannon, K.M. 2015. Colonic bacterial composition in Parkinson’s disease. Mov. Disord.
30, 1351–1360.
CAS
PubMed
Article
Google Scholar
Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun.
4, 1829.
PubMed
Article
CAS
Google Scholar
Kunze, W.A., Mao, Y.K., Wang, B., Huizinga, J.D., Ma, X., Forsythe, P., and Bienenstock, J. 2009. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J. Cell Mol. Med.
13, 2261–2270.
PubMed
Article
PubMed Central
Google Scholar
Landete, J.M., De las Rivas, B., Marcobal, A., and Munoz, R. 2008. Updated molecular knowledge about histamine biosynthesis by bacteria. Crit. Rev. Food Sci. Nutr.
48, 697–714.
CAS
PubMed
Article
Google Scholar
Lim, S.K., Kwon, M.S., Lee, J., Oh, Y.J., Jang, J.Y., Lee, J.H., Park, H.W., Nam, Y.D., Seo, M.J., Roh, S.W., et al. 2017. Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Sci. Rep.
7, 40040.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, X., Cao, S., and Zhang, X. 2015. Modulation of gut microbiotabrain axis by probiotics, prebiotics, and diet. J. Agric. Food Chem.
63, 7885–7895.
CAS
PubMed
Article
Google Scholar
Louveau, A., Smirnov, I., Keyes, T.J., Eccles, J.D., Rouhani, S.J., Peske, J.D., Derecki, N.C., Castle, D., Mandell, J.W., Lee, K.S., et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature
523, 337–341.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lyte, M. 2011. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. BioEssays
33, 574–581.
CAS
PubMed
Article
Google Scholar
Macfabe, D.F. 2012. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb. Ecol. Health Dis.
23, 19260.
Google Scholar
Macfarlane, S. and Macfarlane, G.T. 2003. Regulation of short-chain fatty acid production. Proc. Nutr. Soc.
62, 67–72.
CAS
PubMed
Article
Google Scholar
Macpherson, A.J. and Uhr, T. 2004. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann. N. Y. Acad. Sci.
1029, 36–43.
CAS
PubMed
Article
Google Scholar
McCusker, R.H. and Kelley, K.W. 2013. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J. Exp. Biol.
216, 84–98.
CAS
PubMed
PubMed Central
Article
Google Scholar
McVey Neufeld, K.A., Mao, Y.K., Bienenstock, J., Foster, J.A., and Kunze, W.A. 2013. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil.
25, e183–e188.
Article
Google Scholar
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.F., Rougeot, C., Pichelin, M., Cazaubiel, M., et al. 2011a. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr.
105, 755–764.
CAS
PubMed
Article
Google Scholar
Messaoudi, M., Violle, N., Bisson, J.F., Desor, D., Javelot, H., and Rougeot, C. 2011b. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut microbes
2, 256–261.
PubMed
Article
Google Scholar
Meuer, K., Pitzer, C., Teismann, P., Kruger, C., Goricke, B., Laage, R., Lingor, P., Peters, K., Schlachetzki, J.C., Kobayashi, K., et al. 2006. Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J. Neurochem.
97, 675–686.
CAS
PubMed
Article
Google Scholar
Miller, A.H., Haroon, E., Raison, C.L., and Felger, J.C. 2013. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress. Anxiety
30, 297–306.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mountzouris, K.C., Tsirtsikos, P., Kalamara, E., Nitsch, S., Schatzmayr, G., and Fegeros, K. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci.
86, 309–317.
CAS
PubMed
Article
Google Scholar
O’Mahony, L., McCarthy, J., Kelly, P., Hurley, G., Luo, F., Chen, K., O’Sullivan, G.C., Kiely, B., Collins, J.K., Shanahan, F., et al. 2005. Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology
128, 541–551.
PubMed
Article
Google Scholar
O’Mahony, S.M., Marchesi, J.R., Scully, P., Codling, C., Ceolho, A.M., Quigley, E.M., Cryan, J.F., and Dinan, T.G. 2009. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry
65, 263–267.
PubMed
Article
Google Scholar
Obermeier, B., Daneman, R., and Ransohoff, R.M. 2013. Development, maintenance and disruption of the blood-brain barrier. Nat. Med.
19, 1584–1596.
CAS
PubMed
PubMed Central
Article
Google Scholar
Overduin, J., Schoterman, M.H., Calame, W., Schonewille, A.J., and Ten Bruggencate, S.J. 2013. Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br. J. Nutr.
109, 1338–1348.
CAS
PubMed
Article
Google Scholar
Özogul, F. 2011. Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogen. Int. J. Food Sci. Technol.
46, 478–484.
Article
CAS
Google Scholar
Parracho, H.M., Bingham, M.O., Gibson, G.R., and McCartney, A.L. 2005. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol.
54, 987–991.
PubMed
Article
Google Scholar
Prakash, A., Medhi, B., and Chopra, K. 2013. Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-beta induced experimental model of Alzheimer’s disease. Pharmacol. Biochem. Behav.
110, 46–57.
CAS
PubMed
Article
Google Scholar
Psichas, A., Sleeth, M.L., Murphy, K.G., Brooks, L., Bewick, G.A., Hanyaloglu, A.C., Ghatei, M.A., Bloom, S.R., and Frost, G. 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. (Lond)
39, 424–429.
CAS
Article
Google Scholar
Rafiki, A., Boulland, J.L., Halestrap, A.P., Ottersen, O.P., and Bergersen, L. 2003. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience
122, 677–688.
CAS
PubMed
Article
Google Scholar
Rhee, S.H., Pothoulakis, C., and Mayer, E.A. 2009. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol.
6, 306–314.
CAS
PubMed
Article
Google Scholar
Rios-Covian, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilan, C.G., and Salazar, N. 2016. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol.
7, 185.
PubMed
PubMed Central
Article
Google Scholar
Sarkar, A., Lehto, S.M., Harty, S., Dinan, T.G., Cryan, J.F., and Burnet, P.W. 2016. Psychobiotics and the manipulation of bacteria-gutbrain signals. Trends Neurosci.
39, 763–781.
CAS
PubMed
PubMed Central
Article
Google Scholar
Savignac, H.M., Kiely, B., Dinan, T.G., and Cryan, J.F. 2014. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil.
26, 1615–1627.
CAS
PubMed
Article
Google Scholar
Scheperjans, F., Aho, V., Pereira, P.A., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., et al. 2015. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord.
30, 350–358.
PubMed
Article
Google Scholar
Shyu, W.C., Lin, S.Z., Yang, H.I., Tzeng, Y.S., Pang, C.Y., Yen, P.S., and Li, H. 2004. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation
110, 1847–1854.
CAS
PubMed
Article
Google Scholar
Song, Y., Liu, C., and Finegold, S.M. 2004. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol.
70, 6459–6465.
CAS
PubMed
PubMed Central
Article
Google Scholar
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J.A., and Colzato, L.S. 2015. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun.
48, 258–264.
PubMed
Article
Google Scholar
Stilling, R.M., Dinan, T.G., and Cryan, J.F. 2014. Microbial genes, brain & behaviour -epigenetic regulation of the gut-brain axis. Genes Brain Behav.
13, 69–86.
CAS
PubMed
Article
Google Scholar
Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., Jousson, O., Leoncini, S., Renzi, D., Calabro, A., et al. 2017. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome
5, 24.
PubMed
PubMed Central
Article
Google Scholar
Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol.
558, 263–275.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sun, B.L., Wang, L.H., Yang, T., Sun, J.Y., Mao, L.L., Yang, M.F., Yuan, H., Colvin, R.A., and Yang, X.Y. 2017. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog. Neurobiol. doi: 10.1016/j.pneurobio.2017.08.007 (in press).
Google Scholar
Surwase, S.N. and Jadhav, J.P. 2011. Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids
41, 495–506.
CAS
PubMed
Article
Google Scholar
Thayer, J.F. and Sternberg, E.M. 2009. Neural concomitants of immunity-focus on the vagus nerve. Neuroimage
47, 908–910.
PubMed
Article
Google Scholar
Thomas, C.M., Hong, T., van Pijkeren, J.P., Hemarajata, P., Trinh, D.V., Hu, W., Britton, R.A., Kalkum, M., and Versalovic, J. 2012. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One
7, e31951.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tillisch, K. 2014. The effects of gut microbiota on CNS function in humans. Gut Microbes
5, 404–410.
PubMed
PubMed Central
Article
Google Scholar
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., et al. 2013. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology
144, 1394–1401.e4.
CAS
PubMed
Article
Google Scholar
Tremaroli, V. and Backhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature
489, 242–249.
CAS
PubMed
Article
Google Scholar
Vetulani, J. 2013. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol. Rep.
65, 1451–1461.
PubMed
Article
Google Scholar
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., and Blennow, K. 2017. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep.
7, 13537.
PubMed
PubMed Central
Article
CAS
Google Scholar
Wallner, S., Peters, S., Pitzer, C., Resch, H., Bogdahn, U., and Schneider, A. 2015. The granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front. Cell Dev. Biol.
3, 48.
PubMed
PubMed Central
Article
Google Scholar
Wang, L., Christophersen, C.T., Sorich, M.J., Gerber, J.P., Angley, M.T., and Conlon, M.A. 2011. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol.
77, 6718–6721.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang, L., Christophersen, C.T., Sorich, M.J., Gerber, J.P., Angley, M.T., and Conlon, M.A. 2013. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism
4, 42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang, Y. and Kasper, L.H. 2014. The role of microbiome in central nervous system disorders. Brain. Behav. Immun.
38, 1–12.
PubMed
Article
CAS
Google Scholar
Westfall, S., Lomis, N., Kahouli, I., Dia, S.Y., Singh, S.P., and Prakash, S. 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci.
74, 3769–3787.
CAS
PubMed
Article
Google Scholar
Williams, B.B., Van Benschoten, A.H., Cimermancic, P., Donia, M.S., Zimmermann, M., Taketani, M., Ishihara, A., Kashyap, P.C., Fraser, J.S., and Fischbach, M.A. 2014. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe
16, 495–503.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang, N.J. and Chiu, I.M. 2017. Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol.
429, 587–605.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell
161, 264–276.
CAS
PubMed
PubMed Central
Article
Google Scholar