Advertisement

Journal of Microbiology

, Volume 56, Issue 4, pp 231–237 | Cite as

Hymenobacter terrigena sp. nov., isolated from soil

  • Jeong-Eun Ohn
  • Leonid N. Ten
  • Kyeung Il Park
  • Byung-Oh Kim
  • Jeung-Sul Han
  • Hee-Young Jung
Microbial Systematics and Evolutionary Microbiology
  • 47 Downloads

Abstract

A Gram-stain-negative, non-motile, non-spore-forming, rodshaped, aerobic bacterial strain, designated S1-2-2-5T, was isolated from the Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-2-5T belonged to the family Cytophagaceae in phylum Bacteroidetes, and was most closely related to Hymenobacter terrae DG7AT (98.2%), Hymenobacter rubidus DG7BT (98.0%), Hymenobacter soli PB17T (97.7%), Hymenobacter daeguensis 16F3Y-2T (97.2%) and Hymenobacter saemangeumensis GSR0100T (97.0%). The G + C content of the genomic DNA of strain S1-2-2-5T was 59.4 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16:1ω7c/C16:1ω6c; 32.0%), C15:0 iso (19.0%), and C15:0 anteiso (15.0%) as the major components, and a polar lipid profile with phosphatidylethanolamine as the major component supported the affiliation of strain S1-2-2-5T to the genus Hymenobacter. The DNA-DNA relatedness between strain S1-2-2-5T and H. terrae KCTC 32554T, H. rubidus KCTC 32553T, H. soli KCTC 12607T, H. daeguensis KCTC 52537T, and H. saemangeumensis KACC 16452T were 49.5, 48.2, 34.1, 28.1, and 31.8% respectively, clearly showing that the isolate is not related to them at the species level. Strain S1-2-2-5T could be clearly differentiated from its closest neighbors on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain S1-2-2-5T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter terrigena sp. nov. is proposed. The type strain is S1-2-2-5T (= KCTC 52737T = JCM 32195T).

Keywords

Hymenobacter Bacteroidetes polyphasic taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8029_MOESM1_ESM.pdf (472 kb)
Supplementary material, approximately 472 KB.

References

  1. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.PubMedGoogle Scholar
  2. Beveridge, T.J., Lawrence, J.R., and Murray, R.G.E. 2007. Sampling and staining for light microscopy, pp. 19–33. In Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G., Schmidt, T.M., and Snyder, L.R. (eds). Methods for General and Molecular Microbiology. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  3. Buczolits, S. and Busse, H.J. 2015. Hymenobacter, pp. 1–11. In Whitman, W.B. (ed.), Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc.Google Scholar
  4. Buczolits, S.E., Denner, B.M., Kämpfer, P., and Busse, H.J. 2006. Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int. J. Syst. Evol. Microbiol. 56, 2071–2078.CrossRefPubMedGoogle Scholar
  5. Buczolits, S., Denner, E.B.M., Vybiral, D., Wieser, M., Kämpfer, P., and Buss, H.J. 2002. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int. J. Syst. Evol. Microbiol. 52, 445–456.CrossRefPubMedGoogle Scholar
  6. Cappuccino, J.G. and Sherman, N. 2010. Microbiology: a Laboratory Manual, 9th edn, pp. 69–74 and 161–164. Benjamin Cummings, San Francisco, USA.Google Scholar
  7. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefPubMedGoogle Scholar
  10. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  11. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  12. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.CrossRefGoogle Scholar
  13. Hirsch, P., Ludwig, W., Hethke, C., Sittig, M., Hoffmann, B., and Gallikowski, C.A. 1998. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst. Appl. Microbiol. 21, 374–383.CrossRefPubMedGoogle Scholar
  14. Kang, J.Y., Chun, J., Choi, A., Moon, S.H., Cho, J.C., and Jahng, K.Y. 2013. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Evol. Microbiol. 63, 4568–4573.CrossRefGoogle Scholar
  15. Kim, K.H., Im, W.T., and Lee, S.T. 2008. Hymenobacter soli sp. nov., isolated from grass soil. Int. J. Syst. Evol. Microbiol. 58, 941–945.CrossRefPubMedGoogle Scholar
  16. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  17. Komagata, K. and Suzuki, K.I. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–205.CrossRefGoogle Scholar
  18. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefPubMedGoogle Scholar
  19. Kwak, Y., Park, G.S., and Shin, J.H. 2016. High quality draft genome sequence of the type strain of Pseudomonas lutea OK2T, a phosphate-solubilizing rhizospheric bacterium. Stand. Genomic Sci. 11, 51.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee, J.J., Joo, E.S., Kim, E.B., Jeon, S.H., Srinivasan, S., Jung, H.Y., and Kim, M.K. 2016. Hymenobacter rubidus sp. nov., bacterium isolated form a soil. J. Microbiol. 109, 457–466.Google Scholar
  21. Lee, J.J., Lee, Y.H., Park, S.J., Lee, S.Y., Park, S., Kim, M.K., Ten, L.N., and Jung, H.Y. 2017b. Hymenobacter seoulensis sp. nov., isolated from river water. Int. J. Syst. Evol. Microbiol. 67, 596–601.CrossRefPubMedGoogle Scholar
  22. Lee, J.J., Park, S.J., Lee, Y.H., Lee, S.Y., Ten, L.N., and Jung, H.Y. 2017a. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int. J. Syst. Evol. Microbiol. 67, 1206–1211.CrossRefPubMedGoogle Scholar
  23. Lee, M., Woo, S.G., Chae, M., Shin, M.C., Jung, H.M., and Ten, L.N. 2011. Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int. J. Syst. Evol. Microbiol. 61, 598–604.CrossRefPubMedGoogle Scholar
  24. Liu, K., Liu, Y., Wang, N., Gu, Z., Shen, L., Xu, B., Zhou, Y., Liu, H., and Jiao, N. 2016. Hymenobacter glacieicola sp. nov., isolated from glacier. Int. J. Syst. Evol. Microbiol. 66, 3793–3798.CrossRefPubMedGoogle Scholar
  25. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159–167.Google Scholar
  26. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  27. Reddy, G.S.N. and Garcia-Pichel, F. 2013. Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 103, 321–330.CrossRefPubMedGoogle Scholar
  28. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  29. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.Google Scholar
  30. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization, pp. 607–654. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, USA.Google Scholar
  31. Srinivasan, S., Kim, M., Joo, E., Lee, S.Y., Lee, D.S., and Jung, H.Y. 2015b. Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity. Mol. Cell. Toxicol. 11, 415–421.Google Scholar
  32. Srinivasan, S., Lee, J.J., Park, K.R., Park, S.H., Jung, H.Y., and Kim, M.K. 2015a. Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr. Microbiol. 70, 643–650.CrossRefPubMedGoogle Scholar
  33. Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.CrossRefGoogle Scholar
  34. Ten, L.N., Lee, Y.H., Lee, J.J., Park, S., Lee, S.Y., Park, S., Lee, D.S., Kang, I.K., and Jung, H.Y. 2017b. Hymenobacter daeguensis sp. nov. isolated from river water. J. Microbiol. 55, 253–259.CrossRefPubMedGoogle Scholar
  35. Ten, L.N., Lee, J.J., Lee, Y.H., Park, S.J., Lee, S.Y., Park, S., Lee, D.S., Kang, I.K., Kim, M.K., and Jung, H.Y. 2017a. Hymenobacter knuensis sp. nov., isolated from river water. Curr. Microbiol. 74, 515–521.CrossRefPubMedGoogle Scholar
  36. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.PubMedPubMedCentralGoogle Scholar
  38. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464.Google Scholar
  39. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wilson, K. 1997. Preparation of genomic DNA from bacteria. In Ausubel, F.M. et al. (eds.), Current Protocols in Molecular Biology, Wiley InterScience, 2.4.1–2.4.5, Supplement 27.Google Scholar
  41. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yoon, M.H., Ten, L.N., and Im, W.T. 2007. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from the ginseng cultivating soil. J. Microbiol. Biotechnol. 17, 913–918.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Food Science and BiotechnologyKyungpook National UniversityDaeguRepublic of Korea
  2. 2.School of Applied BiosciencesKyungpook National UniversityDaeguRepublic of Korea
  3. 3.Department of Horticulture and Life ScienceYeungnam UniversityGyeongbukRepublic of Korea
  4. 4.Department of Horticultural ScienceKyungpook National UniversityDaeguRepublic of Korea
  5. 5.Institute of Plant MedicineKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations