Proposal of three novel species of soil bacteria, Variovorax ureilyticus, Variovorax rhizosphaerae, and Variovorax robiniae, in the family Comamonadaceae



Three novel bacterial strains (UCM-2T, UCM-G28T, and UCM-G35T) were obtained while isolating soil bacteria for the development of antibiotics. Cells of these strains were Gram-negative, non-spore forming, motile by means of a single flagellum, and rod shaped. In all strains, the predominant isoprenoid quinone was ubiquinone-8 (Q-8). Cells contained C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c), and C17:0 cyclo as the major fatty acids, and C10:0 3-OH as the major hydroxy fatty acid. The polar lipid profiles of the three novel strains were dominated by diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C contents of strains UCM-2T, UCM-G28T, and UCM-G35T were 67.5, 65.9, and 66.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA sequences showed that strain UCM-2T was most closely related to Variovorax soli NBRC 106424T, whereas strains UCM-G28T and UCM-G35T were most similar to Variovorax ginsengisoli Gsoil 3165T. Values indicating DNA-DNA hybridization between the novel isolates and closely related species in the genus Variovorax were lower than the 70% cut-off point. These phenotypic, chemotaxonomic, and phylogenetic data indicate that the three isolates should be classified as new members of the genus Variovorax, for which the names Variovorax ureilyticus sp. nov., Variovorax rhizosphaerae sp. nov., and Variovorax robiniae sp. nov. are proposed. The type strains are UCM-2T (= KACC 18899T = NBRC 112306T), UCMG28T (= KACC 18900T = NBRC 112307T), and UCM-G35T (= KACC 18901T = NBRC 112308T), respectively.


Variovorax ureilyticus sp. nov. Variovorax rhizosphaerae sp. nov. Variovorax robiniae sp. nov. taxonomy soil bacteria Comamonadaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8025_MOESM1_ESM.pdf (2.2 mb)
Supplementary material, approximately 2.16 MB.


  1. Davis, D.H., Douroroff, M., Stanier, R.Y., and Mandel, M. 1969. Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int. J. Syst. Evol. Microbiol. 19, 375–390.Google Scholar
  2. Ezaki, T., Hashimoto, Y., and YabuuchiI, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229.Google Scholar
  3. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefPubMedGoogle Scholar
  5. Fitch, W.M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  6. Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gao, J.L., Yuan, M., Wang, X.M., Qiu, T.L., Li, J.W., Liu, H.C., Li, X.A., Chen, J., and Sun, J.G. 2015. Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie van Leeuwenhoek 107, 65–72.CrossRefPubMedGoogle Scholar
  8. Han, J.I., Choi, H.K., Lee, S.W., Orwin, P.M., Kim, J., LaRoe, S.L., Kim, T., O’Neil, J., Leadbetter, J.R., Lee, S.Y., et al. 2011. Complete genome sequence of the metabolically versatile plant growthpromoting endophyte Variovorax paradoxus S110. J. Bacteriol. 193, 1183–1190.CrossRefPubMedGoogle Scholar
  9. Im, W.T., Liu, Q.M., Lee, K.J., Kim, S.Y., Lee, S.T., and Yi, T.H. 2010. Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1565–1569.CrossRefPubMedGoogle Scholar
  10. Jiang, F., Chen, L., Belimov, A.A., Shaposhnikov, A.I., Gong, F., Meng, X., Hartung, W., Jeschke, D.W., Davies, W.J., and Dodd, I.C. 2012. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J. Exp. Bot. 63, 6421–6430.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jin, L., Kim, K.K., Ahn, C.Y., and Oh, H.M. 2012. Variovorax defluvii sp. nov., isolated from sewage. Int. J. Syst. Evol. Microbiol. 62, 1779–1783.CrossRefPubMedGoogle Scholar
  12. Kämpfer, P., Busse, H.J., McInroy, J.A., and Glaeser, S.P. 2015. Variovorax gossypii sp. nov., isolated from Gossypium hirsutum. Int. J. Syst. Evol. Microbiol. 65, 4335–4340.CrossRefPubMedGoogle Scholar
  13. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.CrossRefPubMedGoogle Scholar
  14. Kim, B.Y., Weon, H.Y., Yoo, S.H., Lee, S.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2006. Variovorax soli sp. nov., isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol. 56, 2899–2901.CrossRefPubMedGoogle Scholar
  15. Krieg, N.R. and Padgett, P.J. 2011. Phenotypic and physiological characterization methods, pp. 15–61. In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn., Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.Google Scholar
  16. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefPubMedGoogle Scholar
  17. Kurth, C., Schieferdecker, S., Athanasopoulou, K., Seccareccia, I., and Nett, M. 2016. Variochelins, lipopeptide siderophores from Variovorax boronicumulans discovered by genome mining. J. Nat. Prod. 79, 865–872.CrossRefPubMedGoogle Scholar
  18. Leadbetter, J.R. and Greenberg, E.P. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin, P.H., Su, S.C., Tsai, Y.C., and Lee, C.Y. 2002. Identification and characterization of a new gene from Variovorax paradoxus Iso1 encoding N-acyl-D-amino acid amidohydrolase responsible for D-amino acid production. Eur. J. Biochem. 269, 4868–4878.CrossRefPubMedGoogle Scholar
  20. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159–167.Google Scholar
  21. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  22. Miwa, H., Ahmed, I., Yoon, J., Yokota, A., and Fujiwara, T. 2008. Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 58, 286–289.CrossRefPubMedGoogle Scholar
  23. Nguyen, T.M. and Kim, J. 2016a. Description of Variovorax humicola sp. nov., isolated from a forest topsoil. Int. J. Syst. Evol. Microbiol. 66, 2520–2527.CrossRefPubMedGoogle Scholar
  24. Nguyen, T.M. and Kim, J. 2016b. Rhodococcus pedocola sp. nov. and Rhodococcus humicola sp. nov., two antibiotic-producing actinomycetes isolated from soil. Int. J. Syst. Evol. Microbiol. 66, 2362–2369.CrossRefPubMedGoogle Scholar
  25. Nguyen, T.M. and Kim, J. 2017. A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J. Microbiol. 55, 635–639.CrossRefPubMedGoogle Scholar
  26. Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989. Rapid extraction of genomic DNA with guanidinium thiocyanate. Lett. Appl. Microbiol. 8, 151–156.CrossRefGoogle Scholar
  27. Rohde, M. 2011. Microscopy, pp. 61–100. In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn., Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.Google Scholar
  28. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  29. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc., Delaware, USA.Google Scholar
  30. Satola, B., Wubbeler, J.H., and Steinbuchel, A. 2013. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97, 541–560.CrossRefPubMedGoogle Scholar
  31. Sierra, G. 1957. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23, 15–22.CrossRefPubMedGoogle Scholar
  32. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tschech, A. and Pfennig, N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167.CrossRefGoogle Scholar
  34. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464.CrossRefGoogle Scholar
  35. Widdel, F. and Pfennig, N. 1981. Studies on dissimilatory sulfatereducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129, 395–400.CrossRefPubMedGoogle Scholar
  36. Willems, A., De Ley, J., Gillis, M., and Kersters, K. 1991. NOTES: Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Evol. Microbiol. 41, 445–450.Google Scholar
  37. Yoon, J.H., Kang, S.J., and Oh, T.K. 2006. Variovorax dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 56, 811–814.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Tuan Manh Nguyen
    • 1
    • 2
  • Ngoc Hoang Trinh
    • 1
    • 3
  • Jaisoo Kim
    • 1
  1. 1.Department of Life Science, College of Natural Sciences and EngineeringKyonggi UniversitySuwonRepublic of Korea
  2. 2.Thai Nguyen University of Agriculture and ForestryQuyet Thang CommuneThai Nguyen CityVietnam
  3. 3.Thai Nguyen University of SciencesTan Thinh WardThai Nguyen CityVietnam

Personalised recommendations