Antimicrobial actions of dual oxidases and lactoperoxidase

Abstract

The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1–5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.

References

  1. Ahariz, M. and Courtois, P. 2010. Candida albicans susceptibility to lactoperoxidase-generated hypoiodite. Clin. Cosmet. Investig. Dent. 2, 69–78.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Allen, P.Z. and Morrison, M. 1966. Lactoperoxidase. Vi. Immunochemical studies on lactoperoxidase from the milk of several species. Arch. Biochem. Biophys. 113, 540–547.

    PubMed  CAS  Google Scholar 

  3. Ameziane-El-Hassani, R., Morand, S., Boucher, J.L., Frapart, Y.M., Apostolou, D., Agnandji, D., Gnidehou, S., Ohayon, R., Noel-Hudson, M.S., Francon, J., et al. 2005. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046–30054.

    PubMed  Article  CAS  Google Scholar 

  4. Asehnoune, K., Strassheim, D., Mitra, S., Kim, J.Y., and Abraham, E. 2004. Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF-kB. J. Immunol. 172, 2522–2529.

    PubMed  Article  CAS  Google Scholar 

  5. Ashby, M.T., Kreth, J., Soundarajan, M., and Sivuilu, L.S. 2009. Influence of a model human defensive peroxidase system on oral streptococcal antagonism. Microbiology 155, 3691–3700.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Bafort, F., Parisi, O., Perraudin, J.P., and Jijakli, M.H. 2014. Mode of action of lactoperoxidase as related to its antimicrobial activity: A review. Enzyme Res. 2014, 517164.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Bedard, K. and Krause, K.H. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 87, 245–313.

    PubMed  Article  CAS  Google Scholar 

  8. Bedard, K., Lardy, B., and Krause, K.H. 2007. NOX family NADPH oxidases: not just in mammals. Biochimie 89, 1107–1112.

    PubMed  Article  CAS  Google Scholar 

  9. Benoy, M.J., Essy, A.K., Sreekumar, B., and Haridas, M. 2000. Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase. Life Sci. 66, 2433–2439.

    PubMed  Article  CAS  Google Scholar 

  10. Bjorck, L., Rosen, C., Marshall, V., and Reiter, B. 1975. Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other Gram-negative bacteria. Appl. Microbiol. 30, 199–204.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Bjorkman, U. and Ekholm, R. 1984. Generation of H2O2 in isolated porcine thyroid follicles. Endocrinology 115, 392–398.

    PubMed  Article  CAS  Google Scholar 

  12. Bokoch, G.M. and Knaus, U.G. 2003. NADPH oxidases: Not just for leukocytes anymore! Trends Biochem. Sci. 28, 502–508.

    CAS  Google Scholar 

  13. Boots, A.W., Hristova, M., Kasahara, D.I., Haenen, G.R., Bast, A., and van der Vliet, A. 2009. ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J. Biol. Chem. 284, 17858–17867.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Bosch, E.H., van Doorne, H., and de Vries, S. 2000. The lactoperoxidase system: The influence of iodide and the chemical and antimicrobial stability over the period of about 18 months. J. Appl. Microbiol. 89, 215–224.

    PubMed  Article  CAS  Google Scholar 

  15. Carlsson, J., Edlund, M.B., and Hanstrom, L. 1984. Bactericidal and cytotoxic effects of hypothiocyanite-hydrogen peroxide mixtures. Infect. Immun. 44, 581–586.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Carre, A., Louzada, R.A., Fortunato, R.S., Ameziane-El-Hassani, R., Morand, S., Ogryzko, V., de Carvalho, D.P., Grasberger, H., Leto, T.L., and Dupuy, C. 2015. When an intramolecular disulfide bridge governs the interaction of DUOX2 with its partner DUOXA2. Antioxid. Redox Signal. 23, 724–733.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Carvalho, D.P. and Dupuy, C. 2013. Role of the NADPH oxidases DUOX and NOX4 in thyroid oxidative stress. Eur. Thyroid J. 2, 160–167.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Cegolon, L., Salata, C., Piccoli, E., Juarez, V., Palu, G., Mastrangelo, G., and Calistri, A. 2014. In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus. Int. J. Hyg. Environ. Health 217, 17–22.

    PubMed  Article  CAS  Google Scholar 

  19. Chandler, J.D. and Day, B.J. 2012. Thiocyanate: A potentially useful therapeutic agent with host defense and antioxidant properties. Biochem. Pharmacol. 84, 1381–1387.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Chang, S., Linderholm, A., Franzi, L., Kenyon, N., Grasberger, H., and Harper, R. 2013. Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic. Biol. Med. 65, 38–46.

    PubMed  Article  CAS  Google Scholar 

  21. Chavez, V., Mohri-Shiomi, A., and Garsin, D.A. 2009. Ce-Duox1/ BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans. Infect. Immun. 77, 4983–4989.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Chen, X., Lee, K.A., Ha, E.M., Lee, K.M., Seo, Y.Y., Choi, H.K., Kim, H.N., Kim, M.J., Cho, C.S., Lee, S.Y., et al. 2011. A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem. Commun. (Camb) 47, 4373–4375.

    Article  CAS  Google Scholar 

  23. Chen, C., Li, L., Zhou, H.J., and Min, W. 2017. The role of NOX4 and TRX2 in angiogenesis and their potential cross-talk. Antioxidants (Basel) 6, 42.

    Article  CAS  Google Scholar 

  24. Collins, P.L. and Melero, J.A. 2011. Progress in understanding and controlling respiratory syncytial virus: Still crazy after all these years. Virus Res. 162, 80–99.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Conner, G.E., Salathe, M., and Forteza, R. 2002. Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am. J. Respir. Crit. Care Med. 166, S57–S61.

    PubMed  Article  Google Scholar 

  26. Conner, G.E., Wijkstrom-Frei, C., Randell, S.H., Fernandez, V.E., and Salathe, M. 2007. The lactoperoxidase system links anion transport to host defense in cystic fibrosis. FEBS Lett. 581, 271–278.

    PubMed  Article  CAS  Google Scholar 

  27. Courtois, P., Majerus, P., Labbe, M., Vanden Abbeele, A., Yourassowsky, E., and Pourtois, M. 1992. Susceptibility of anaerobic microorganisms to hypothiocyanite produced by lactoperoxidase. Acta Stomatol. Belg. 89, 155–162.

    PubMed  CAS  Google Scholar 

  28. Csillag, C., Nielsen, O.H., Vainer, B., Olsen, J., Dieckgraefe, B.K., Hendel, J., Vind, I., Dupuy, C., Nielsen, F.C., and Borup, R. 2007. Expression of the genes dualoxidase 2, lipocalin 2 and regenerating islet-derived 1 alpha in Crohn's disease. Scand. J. Gastroenterol. 42, 454–463.

    PubMed  Article  CAS  Google Scholar 

  29. Davies, M.J., Hawkins, C.L., Pattison, D.I., and Rees, M.D. 2008. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid. Redox Signal. 10, 1199–1234.

    PubMed  Article  CAS  Google Scholar 

  30. De Deken, X., Corvilain, B., Dumont, J.E., and Miot, F. 2014. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid. Redox Signal. 20, 2776–2793.

    PubMed  Article  CAS  Google Scholar 

  31. De Deken, X., Wang, D., Many, M.C., Costagliola, S., Libert, F., Vassart, G., Dumont, J.E., and Miot, F. 2000. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23227–23233.

    PubMed  Article  Google Scholar 

  32. Derscheid, R.J., van Geelen, A., Berkebile, A.R., Gallup, J.M., Hostetter, S.J., Banfi, B., McCray, P.B.Jr., and Ackermann, M.R. 2014. Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity. Am. J. Respir. Cell Mol. Biol. 50, 389–397.

    PubMed  PubMed Central  Google Scholar 

  33. Dickinson, J.D., Sweeter, J.M., Warren, K.J., Ahmad, I.M., De Deken, X., Zimmerman, M.C., and Brody, S.L. 2018. Autophagy regulates DUOX1 localization and superoxide production in airway epithelial cells during chronic IL-13 stimulation. Redox Biol. 14, 272–284.

    PubMed  Article  CAS  Google Scholar 

  34. Donko, A., Morand, S., Korzeniowska, A., Boudreau, H.E., Zana, M., Hunyady, L., Geiszt, M., and Leto, T.L. 2014. Hypothyroidismassociated missense mutation impairs NADPH oxidase activity and intracellular trafficking of DUOX2. Free Radic. Biol. Med. 73, 190–200.

    PubMed  Article  CAS  Google Scholar 

  35. Donko, A., Peterfi, Z., Sum, A., Leto, T., and Geiszt, M. 2005. Dual oxidases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2301–2308.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Donko, A., Ruisanchez, E., Orient, A., Enyedi, B., Kapui, R., Peterfi, Z., de Deken, X., Benyo, Z., and Geiszt, M. 2010. Urothelial cells produce hydrogen peroxide through the activation of DUOX1. Free Radic. Biol. Med. 49, 2040–2048.

    PubMed  Article  CAS  Google Scholar 

  37. Doyle, M.P. and Marth, E.H. 1978. Degradation of aflatoxin by lactoperoxidase. Z. Lebensm. Unters. Forsch. 166, 271–273.

    PubMed  Article  CAS  Google Scholar 

  38. Dupuy, C., Kaniewski, J., Deme, D., Pommier, J., and Virion, A. 1989. NADPH-dependent H2O2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengers. Eur. J. Biochem. 185, 597–603.

    PubMed  Article  CAS  Google Scholar 

  39. Dupuy, C., Ohayon, R., Valent, A., Noel-Hudson, M.S., Deme, D., and Virion, A. 1999. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J. Biol. Chem. 274, 37265–37269.

    PubMed  CAS  Google Scholar 

  40. Edens, W.A., Sharling, L., Cheng, G., Shapira, R., Kinkade, J.M., Lee, T., Edens, H.A., Tang, X., Sullards, C., Flaherty, D.B., et al. 2001. Tyrosine cross-linking of extracellular matrix is catalyzed by DUOX, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J. Cell. Biol. 154, 879–892.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. El-Chemaly, S., Salathe, M., Baier, S., Conner, G.E., and Forteza, R. 2003. Hydrogen peroxide-scavenging properties of normal human airway secretions. Am. J. Respir. Crit. Care Med. 167, 425–430.

    PubMed  Article  Google Scholar 

  42. El-Fakharany, E.M., Uversky, V.N., and Redwan, E.M. 2017. Comparative analysis of the antiviral activity of camel, bovine, and human lactoperoxidases against herpes simplex virus type 1. Appl. Biochem. Biotechnol. 182, 294–310.

    PubMed  Article  CAS  Google Scholar 

  43. El Hassani, R.A., Benfares, N., Caillou, B., Talbot, M., Sabourin, J.C., Belotte, V., Morand, S., Gnidehou, S., Agnandji, D., Ohayon, R., et al. 2005. Dual oxidase2 is expressed all along the digestive tract. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G933–G942.

    PubMed  Article  CAS  Google Scholar 

  44. Fink, K., Duval, A., Martel, A., Soucy-Faulkner, A., and Grandvaux, N. 2008. Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kB in airway epithelial cells. J. Immunol. 180, 6911–6922.

    PubMed  Article  CAS  Google Scholar 

  45. Fink, K., Martin, L., Mukawera, E., Chartier, S., De Deken, X., Brochiero, E., Miot, F., and Grandvaux, N. 2013. IFNβ/TNFa synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res. 23, 673–690.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Fischer, A.J., Lennemann, N.J., Krishnamurthy, S., Pocza, P., Durairaj, L., Launspach, J.L., Rhein, B.A., Wohlford-Lenane, C., Lorentzen, D., Banfi, B., et al. 2011. Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide. Am. J. Respir. Cell Mol. Biol. 45, 874–881.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Fischer, H., Gonzales, L.K., Kolla, V., Schwarzer, C., Miot, F., Illek, B., and Ballard, P.L. 2007. Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1506–L1514.

    PubMed  Article  CAS  Google Scholar 

  48. Forteza, R., Salathe, M., Miot, F., Forteza, R., and Conner, G.E. 2005. Regulated hydrogen peroxide production by DUOX in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 32, 462–469.

    PubMed  Article  CAS  Google Scholar 

  49. Fortunato, R.S., Lima de Souza, E.C., Ameziane-el Hassani, R., Boufraqech, M., Weyemi, U., Talbot, M., Lagente-Chevallier, O., de Carvalho, D.P., Bidart, J.M., Schlumberger, M., et al. 2010. Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. J. Clin. Endocrinol. Metab. 95, 5403–5411.

    PubMed  Article  CAS  Google Scholar 

  50. Gattas, M.V., Forteza, R., Fragoso, M.A., Fregien, N., Salas, P., Salathe, M., and Conner, G.E. 2009. Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli. Free Radic. Biol. Med. 47, 1450–1458.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Geiszt, M. and Leto, T.L. 2004. The Nox family of NAD(P)H oxidases: Host defense and beyond. J. Biol. Chem. 279, 51715–51718.

    PubMed  Article  CAS  Google Scholar 

  52. Geiszt, M., Witta, J., Baffi, J., Lekstrom, K., and Leto, T.L. 2003. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504.

    PubMed  Article  CAS  Google Scholar 

  53. Genestra, M. 2007. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 19, 1807–1819.

    PubMed  Article  CAS  Google Scholar 

  54. Gerson, C., Sabater, J., Scuri, M., Torbati, A., Coffey, R., Abraham, J.W., Lauredo, I., Forteza, R., Wanner, A., Salathe, M., et al. 2000. The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Respir. Cell Mol. Biol. 22, 665–671.

    PubMed  Article  CAS  Google Scholar 

  55. Gingerich, A., Pang, L., Hanson, J., Dlugolenski, D., Streich, R., Lafontaine, E.R., Nagy, T., Tripp, R.A., and Rada, B. 2016. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus. Inflamm. Res. 65, 71–80.

    PubMed  Article  CAS  Google Scholar 

  56. Goldman, A.S. and Smith, C.W. 1973. Host resistance factors in human milk. J. Pediatr. 82, 1082–1090.

    PubMed  Article  CAS  Google Scholar 

  57. Grandvaux, N., Mariani, M., and Fink, K. 2015. Lung epithelial NOX/ DUOX and respiratory virus infections. Clin. Sci. (Lond) 128, 337–347.

    Article  CAS  Google Scholar 

  58. Grasberger, H. 2010. Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol. Cell. Endocrinol. 322, 99–106.

    PubMed  Article  CAS  Google Scholar 

  59. Grasberger, H., De Deken, X., Mayo, O.B., Raad, H., Weiss, M., Liao, X.H., and Refetoff, S. 2012. Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol. Endocrinol. 26, 481–492.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Grasberger, H., De Deken, X., Miot, F., Pohlenz, J., and Refetoff, S. 2007. Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol. Endocrinol. 21, 1408–1421.

    PubMed  Article  CAS  Google Scholar 

  61. Grasberger, H. and Refetoff, S. 2006. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J. Biol. Chem. 281, 18269–18272.

    PubMed  CAS  Google Scholar 

  62. Grieve, P.A., Dionysius, D.A., and Vos, A.C. 1992. In vitro antibacterial activity of the lactoperoxidase system towards enterotoxigenic strains of Escherichia coli. Zentralbl. Veterinarmed. B. 39, 537–545.

    PubMed  CAS  Google Scholar 

  63. Ha, E.M., Lee, K.A., Park, S.H., Kim, S.H., Nam, H.J., Lee, H.Y., Kang, D., and Lee, W.J. 2009a. Regulation of DUOX by the Gaq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev. Cell. 16, 386–397.

    PubMed  Article  CAS  Google Scholar 

  64. Ha, E.M., Lee, K.A., Seo, Y.Y., Kim, S.H., Lim, J.H., Oh, B.H., Kim, J., and Lee, W.J. 2009b. Coordination of multiple dual oxidaseregulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nat. Immunol. 10, 949–957.

    PubMed  Article  CAS  Google Scholar 

  65. Ha, E.M., Oh, C.T., Bae, Y.S., and Lee, W.J. 2005. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850.

    PubMed  Article  CAS  Google Scholar 

  66. Habibovic, A., Hristova, M., Heppner, D.E., Danyal, K., Ather, J.L., Janssen-Heininger, Y.M., Irvin, C.G., Poynter, M.E., Lundblad, L.K., Dixon, A.E., et al. 2016. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1, e88811.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Harman, D. 1956. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300.

    PubMed  Article  CAS  Google Scholar 

  68. Harman, D. 1981. The aging process. Proc. Natl. Acad. Sci. USA 78, 7124–7128.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Harper, R.W., Xu, C., Eiserich, J.P., Chen, Y., Kao, C.Y., Thai, P., Setiadi, H., and Wu, R. 2005. Differential regulation of dual NADPH oxidases/peroxidases, DUOX1 and DUOX2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 579, 4911–4917.

    PubMed  Article  CAS  Google Scholar 

  70. Harper, R.W., Xu, C., McManus, M., Heidersbach, A., and Eiserich, J.P. 2006. DUOX2 exhibits potent heme peroxidase activity in human respiratory tract epithelium. FEBS Lett. 580, 5150–5154.

    PubMed  Article  CAS  Google Scholar 

  71. Hoeven, R., McCallum, K.C., Cruz, M.R., and Garsin, D.A. 2011. Ce-DUOX1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog. 7, e1002453.

    PubMed  Article  CAS  Google Scholar 

  72. Hoste, C., Dumont, J.E., Miot, F., and De Deken, X. 2012. The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA. Exp. Cell Res. 318, 2353–2364.

    PubMed  Article  CAS  Google Scholar 

  73. Ihalin, R., Loimaranta, V., Lenander-Lumikari, M., and Tenovuo, J. 1998. The effects of different (pseudo)halide substrates on peroxidase- mediated killing of Actinobacillus actinomycetemcomitans. J. Periodont. Res. 33, 421–427.

    PubMed  Article  CAS  Google Scholar 

  74. Ihalin, R., Pienihakkinen, K., Lenander, M., Tenovuo, J., and Jousimies-Somer, H. 2003. Susceptibilities of different Actinobacillus actinomycetemcomitans strains to lactoperoxidase-iodide-hydrogen peroxide combination and different antibiotics. Int. J. Antimicrob. Agents 21, 434–440.

    PubMed  Article  CAS  Google Scholar 

  75. Jha, J.C., Watson, A.M.D., Mathew, G., de Vos, L.C., and Jandeleit-Dahm, K. 2017. The emerging role of NADPH oxidase NOX5 in vascular disease. Clin. Sci. (Lond) 131, 981–990.

    Article  CAS  Google Scholar 

  76. Johnson, K.R., Marden, C.C., Ward-Bailey, P., Gagnon, L.H., Bronson, R.T., and Donahue, L.R. 2007. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, DUOX2. Mol. Endocrinol. 21, 1593–1602.

    PubMed  Article  CAS  Google Scholar 

  77. Joo, J.H., Ryu, J.H., Kim, C.H., Kim, H.J., Suh, M.S., Kim, J.O., Chung, S.Y., Lee, S.N., Kim, H.M., Bae, Y.S., et al. 2012. Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflammatory response in airway mucosa. Antioxid. Redox Signal. 16, 57–70.

    PubMed  Article  CAS  Google Scholar 

  78. Kawahara, T., Kuwano, Y., Teshima-Kondo, S., Takeya, R., Sumimoto, H., Kishi, K., Tsunawaki, S., Hirayama, T., and Rokutan, K. 2004. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to toll-like receptor 5 signaling in large intestinal epithelial cells. J. Immunol. 172, 3051–3058.

    PubMed  Article  CAS  Google Scholar 

  79. Kho, H.S., Kim, Y.Y., Chang, J.Y., Kim, M.J., and Lee, S.G. 2012. Candidacidal activities of the glucose oxidase-mediated lactoperoxidase system. Arch. Oral. Biol. 57, 684–688.

    PubMed  Article  CAS  Google Scholar 

  80. Kim, H.J., Kim, C.H., Kim, M.J., Ryu, J.H., Seong, S.Y., Kim, S., Lim, S.J., Holtzman, M.J., and Yoon, J.H. 2015. The induction of pattern-recognition receptor expression against influenza A virus through DUOX2-derived reactive oxygen species in nasal mucosa. Am. J. Respir. Cell Mol. Biol. 53, 525–535.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Kim, H.J., Kim, C.H., Ryu, J.H., Kim, M.J., Park, C.Y., Lee, J.M., Holtzman, M.J., and Yoon, J.H. 2013. Reactive oxygen species induce antiviral innate immune response through IFN- λ regulation in human nasal epithelial cells. Am. J. Respir. Cell Mol. Biol. 49, 855–865.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Kim, J.H., Lee, J., Bae, S.J., Kim, Y., Park, B.J., Choi, J.W., Kwon, J., Cha, G.H., Yoo, H.J., Jo, E.K., et al. 2017. NADPH oxidase 4 is required for the generation of macrophage migration inhibitory factor and host defense against Toxoplasma gondii infection. Sci. Rep. 7, 6361.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Klebanoff, S.J., Clem, W.H., and Luebke, R.G. 1966. The peroxidase- thiocyanate-hydrogen peroxide antimicrobial system. Biochim. Biophys. Acta 117, 63–72.

    PubMed  Article  CAS  Google Scholar 

  84. Klebanoff, S.J. and Luebke, R.G. 1965. The antilactobacillus system of saliva. Role of salivary peroxidase. Proc. Soc. Exp. Biol. Med. 118, 483–486.

    PubMed  Article  CAS  Google Scholar 

  85. Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., and Barillas-Mury, C. 2010. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327, 1644–1648.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. Lambeth, J.D. 2004. Nox enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189.

    PubMed  Article  CAS  Google Scholar 

  87. Lambeth, J.D. and Neish, A.S. 2014. Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited. Annu. Rev. Pathol. 9, 119–145.

    PubMed  Article  CAS  Google Scholar 

  88. Lee, K.A., Kim, B., Bhin, J., Kim, D.H., You, H., Kim, E.K., Kim, S.H., Ryu, J.H., Hwang, D., and Lee, W.J. 2015a. Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via hedgehog- induced signaling endosomes. Cell Host Microbe 17, 191–204.

    PubMed  Article  CAS  Google Scholar 

  89. Lee, K.A., Kim, B., You, H., and Lee, W.J. 2015b. Uracil-induced signaling pathways for DUOX-dependent gut immunity. Fly (Austin) 9, 115–120.

    Article  Google Scholar 

  90. Lenander-Lumikari, M. 1992. Inhibition of Candida albicans by the peroxidase/SCN-/H2O2 system. Oral. Microbiol. Immunol. 7, 315–320.

    PubMed  Article  CAS  Google Scholar 

  91. Leto, T.L., Morand, S., Hurt, D., and Ueyama, T. 2009. Targeting and regulation of reactive oxygen species generation by NOX family NADPH oxidases. Antioxid. Redox Signal. 11, 2607–2619.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Li, Y. and Pagano, P.J. 2017. Microvascular NADPH oxidase in health and disease. Free Radic. Biol. Med. 109, 33–47.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. Lipinski, S., Till, A., Sina, C., Arlt, A., Grasberger, H., Schreiber, S., and Rosenstiel, P. 2009. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J. Cell Sci. 122, 3522–3530.

    PubMed  Article  CAS  Google Scholar 

  94. Little, A.C., Sulovari, A., Danyal, K., Heppner, D.E., Seward, D.J., and van der Vliet, A. 2017. Paradoxical roles of dual oxidases in cancer biology. Free Radic. Biol. Med. 110, 117–132.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  95. Liu, T., Castro, S., Brasier, A.R., Jamaluddin, M., Garofalo, R.P., and Casola, A. 2004. Reactive oxygen species mediate virus-induced STAT activation: Role of tyrosine phosphatases. J. Biol. Chem. 279, 2461–2469.

    PubMed  Article  CAS  Google Scholar 

  96. Lorentzen, D., Durairaj, L., Pezzulo, A.A., Nakano, Y., Launspach, J., Stoltz, D.A., Zamba, G., McCray, P.B.Jr., Zabner, J., Welsh, M.J., et al. 2011. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radic. Biol. Med. 50, 1144–1150.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. Majerus, P.M. and Courtois, P.A. 1992. Susceptibility of Candida albicans to peroxidase-catalyzed oxidation products of thiocyanate, iodide and bromide. J. Biol. Buccale 20, 241–245.

    PubMed  CAS  Google Scholar 

  98. Malhotra, K., Salmon, D., Le Bras, J., and Vilde, J.L. 1988. Susceptibility of Plasmodium falciparum to a peroxidase-mediated oxygendependent microbicidal system. Infect. Immun. 56, 3305–3309.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Marshall, V.M. and Reiter, B. 1980. Comparison of the antibacterial activity of the hypothiocyanite anion towards Streptococcus lactis and Escherichia coli. J. Gen. Microbiol. 120, 513–516.

    PubMed  CAS  Google Scholar 

  100. McGovern, F.M., Magee, D.A., Browne, J.A., MacHugh, D.E., and Boland, T.M. 2016. Iodine supplementation of the pregnant dam alters intestinal gene expression and immunoglobulin uptake in the newborn lamb. Animal 10, 598–606.

    PubMed  Article  CAS  Google Scholar 

  101. Meitzler, J.L., Hinde, S., Banfi, B., Nauseef, W.M., and Ortiz de Montellano, P.R. 2013. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J. Biol. Chem. 288, 7147–7157.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. Mickelson, M.N. 1979. Antibacterial action of lactoperoxidasethiocyanate- hydrogen peroxide on Streptococcus agalactiae. Appl. Environ. Microbiol. 38, 821–826.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Mickelson, M.N. and Anderson, A.J. 1984. Cystine antagonism of the antibacterial action of lactoperoxidase-thiocyanate-hydrogen peroxide on Streptococcus agalactiae. Appl. Environ. Microbiol. 47, 338–342.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Mikola, H., Waris, M., and Tenovuo, J. 1995. Inhibition of herpes simplex virus type 1, respiratory syncytial virus and echovirus type 11 by peroxidase-generated hypothiocyanite. Antiviral Res. 26, 161–171.

    PubMed  Article  CAS  Google Scholar 

  105. Mistry, R.K. and Brewer, A.C. 2017. Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis. Free Radic. Biol. Med. 108, 500–516.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P., and Malik, A.B. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 20, 1126–1167.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. Morand, S., Agnandji, D., Noel-Hudson, M.S., Nicolas, V., Buisson, S., Macon-Lemaitre, L., Gnidehou, S., Kaniewski, J., Ohayon, R., Virion, A., et al. 2004. Targeting of the dual oxidase 2 N-terminal region to the plasma membrane. J. Biol. Chem. 279, 30244–30251.

    PubMed  Article  CAS  Google Scholar 

  108. Morand, S., Ueyama, T., Tsujibe, S., Saito, N., Korzeniowska, A., and Leto, T.L. 2009. DUOX maturation factors form cell surface complexes with DUOX affecting the specificity of reactive oxygen species generation. FASEB J. 23, 1205–1218.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. Moreau-Marquis, S., Coutermarsh, B., and Stanton, B.A. 2015. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J. Antimicrob. Chemother. 70, 160–166.

    PubMed  Article  CAS  Google Scholar 

  110. Moribe, H., Konakawa, R., Koga, D., Ushiki, T., Nakamura, K., and Mekada, E. 2012. Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans. PLoS Genet. 8, e1002957.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Moribe, H. and Mekada, E. 2013. Co-occurrence of tetraspanin and ROS generators: Conservation in protein cross-linking and other developmental processes. Worm 2, e23415.

    PubMed  PubMed Central  Article  Google Scholar 

  112. Morris, P.W., Kelley, K.M., and Logas, W.G. 1979. Alpha-amanitin: Inactivation by bovine lactoperoxidase. Experientia 35, 589–591.

    PubMed  Article  CAS  Google Scholar 

  113. Moskwa, P., Lorentzen, D., Excoffon, K.J., Zabner, J., McCray, P.B.Jr., Nauseef, W.M., Dupuy, C., and Banfi, B. 2007. A novel host defense system of airways is defective in cystic fibrosis. Am. J. Respir. Crit. Care Med. 175, 174–183.

    PubMed  Article  CAS  Google Scholar 

  114. Muzza, M. and Fugazzola, L. 2017. Disorders of H2O2 generation. Best Pract. Res. Clin. Endocrinol. Metab. 31, 225–240.

    PubMed  Article  CAS  Google Scholar 

  115. Nauseef, W.M. 2018. Biosynthesis of human myeloperoxidase. Arch. Biochem. Biophys. 642, 1–9.

    PubMed  Article  CAS  Google Scholar 

  116. Niethammer, P., Grabher, C., Look, A.T., and Mitchison, T.J. 2009. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. Ohye, H. and Sugawara, M. 2010. Dual oxidase, hydrogen peroxide and thyroid diseases. Exp. Biol. Med. (Maywood) 235, 424–433.

    Article  CAS  Google Scholar 

  118. Pachucki, J., Wang, D., Christophe, D., and Miot, F. 2004. Structural and functional characterization of the two human THOX/DUOX genes and their 5'-flanking regions. Mol. Cell. Endocrinol. 214, 53–62.

    PubMed  Article  CAS  Google Scholar 

  119. Panday, A., Sahoo, M.K., Osorio, D., and Batra, S. 2015. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 12, 5–23.

    PubMed  Article  CAS  Google Scholar 

  120. Park, H.S., Jung, H.Y., Park, E.Y., Kim, J., Lee, W.J., and Bae, Y.S. 2004. Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kB. J. Immunol. 173, 3589–3593.

    PubMed  Article  CAS  Google Scholar 

  121. Park, H.S., Park, D., and Bae, Y.S. 2006. Molecular interaction of NADPH oxidase 1 with βPix and NOX Organizer 1. Biochem. Biophys. Res. Commun. 339, 985–990.

    PubMed  Article  CAS  Google Scholar 

  122. Popper, L. and Knorr, D. 1997. Inactivation of yeast and filamentous fungi by the lactoperoxidase-hydrogen peroxide-thiocyanatesystem. Nahrung 41, 29–33.

    PubMed  Article  CAS  Google Scholar 

  123. Pourtois, M., Binet, C., Van Tieghem, N., Courtois, P., Vandenabbeele, A., and Thiry, L. 1990. Inhibition of HIV infectivity by lactoperoxidase-produced hypothiocyanite. J. Biol. Buccale 18, 251–253.

    PubMed  CAS  Google Scholar 

  124. Prieto-Bermejo, R. and Hernandez-Hernandez, A. 2017. The importance of NADPH oxidases and redox signaling in angiogenesis. Antioxidants (Basel) 6, 32.

    Article  CAS  Google Scholar 

  125. Rada, B. 2017. Neutrophil extracellular trap release driven by bacterial motility: Relevance to cystic fibrosis lung disease. Commun. Integr. Biol. 10, e1296610.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. Rada, B., Boudreau, H.E., Park, J.J., and Leto, T.L. 2014a. Histamine stimulates hydrogen peroxide production by bronchial epithelial cells via histamine H1 receptor and dual oxidase. Am. J. Respir. Cell Mol. Biol. 50, 125–134.

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Rada, B., Lekstrom, K., Damian, S., Dupuy, C., and Leto, T.L. 2008. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J. Immunol. 181, 4883–4893.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. Rada, B. and Leto, T.L. 2008. Oxidative innate immune defenses by NOX/DUOX family NADPH oxidases. Contrib. Microbiol. 15, 164–187.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. Rada, B. and Leto, T.L. 2009. Redox warfare between airway epithelial cells and Pseudomonas: dual oxidase versus pyocyanin. Immunol. Res. 43, 198–209.

    PubMed  PubMed Central  Article  Google Scholar 

  130. Rada, B. and Leto, T.L. 2010. Characterization of hydrogen peroxide production by DUOX in bronchial epithelial cells exposed to Pseudomonas aeruginosa. FEBS Lett. 584, 917–922.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. Rada, B., Park, J.J., Sil, P., Geiszt, M., and Leto, T.L. 2014b. NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm. Res. 63, 821–830.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. Reiter, B. 1978. The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found. Symp. 65, 285–294.

    Google Scholar 

  133. Rigutto, S., Hoste, C., Grasberger, H., Milenkovic, M., Communi, D., Dumont, J.E., Corvilain, B., Miot, F., and De Deken, X. 2009. Activation of dual oxidases DUOX1 and DUOX2: Differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J. Biol. Chem. 284, 6725–6734.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. Rokutan, K., Kawahara, T., Kuwano, Y., Tominaga, K., Nishida, K., and Teshima-Kondo, S. 2008. NOX enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin. Immunopathol. 30, 315–327.

    PubMed  Article  CAS  Google Scholar 

  135. Roy, J., Galano, J.M., Durand, T., Le Guennec, J.Y., and Lee, J.C. 2017. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 31, 3729–3745.

    PubMed  Article  CAS  Google Scholar 

  136. Ryu, J.C., Kim, M.J., Kwon, Y., Oh, J.H., Yoon, S.S., Shin, S.J., Yoon, J.H., and Ryu, J.H. 2017. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. 10, 757–774.

    PubMed  Article  CAS  Google Scholar 

  137. Salathe, M., Holderby, M., Forteza, R., Abraham, W.M., Wanner, A., and Conner, G.E. 1997. Isolation and characterization of a peroxidase from the airway. Am. J. Respir. Cell Mol. Biol. 17, 97–105.

    PubMed  Article  CAS  Google Scholar 

  138. Schwarzer, C., Machen, T.E., Illek, B., and Fischer, H. 2004. NADPH oxidase-dependent acid production in airway epithelial cells. J. Biol. Chem. 279, 36454–36461.

    PubMed  Article  CAS  Google Scholar 

  139. Segal, A.W. 2005. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. Shao, M.X. and Nadel, J.A. 2005. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. USA 102, 767–772.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. Simmons, J.H., Purdy, G.A., Franklin, C.L., Trottier, P., Churchill, A.E., Russell, R.J., Besch-Williford, C.L., and Riley, L.K. 2002. Characterization of a novel parainfluenza virus, caviid parainfluenza virus 3, from laboratory guinea pigs (Cavia porcellus). Comp. Med. 52, 548–554.

    PubMed  CAS  Google Scholar 

  142. Sirokmany, G., Donko, A., and Geiszt, M. 2016. NOX/DUOX family of NADPH oxidases: Lessons from knockout mouse models. Trends Pharmacol. Sci. 37, 318–327.

    PubMed  Article  CAS  Google Scholar 

  143. Sommer, F. and Backhed, F. 2015. The gut microbiota engages different signaling pathways to induce DUOX2 expression in the ileum and colon epithelium. Mucosal. Immunol. 8, 372–379.

    PubMed  Article  CAS  Google Scholar 

  144. Song, Y., Ruf, J., Lothaire, P., Dequanter, D., Andry, G., Willemse, E., Dumont, J.E., Van Sande, J., and De Deken, X. 2010. Association of DUOXes with thyroid peroxidase and its regulation in thyrocytes. J. Clin. Endocrin. Metabol. 95, 375–382.

    Article  CAS  Google Scholar 

  145. Sorce, S., Stocker, R., Seredenina, T., Holmdahl, R., Aguzzi, A., Chio, A., Depaulis, A., Heitz, F., Olofsson, P., Olsson, T., et al. 2017. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic. Biol. Med. 112, 387–396.

    PubMed  Article  CAS  Google Scholar 

  146. Soukka, T., Lumikari, M., and Tenovuo, J. 1991. Combined inhibitory effect of lactoferrin and lactoperoxidase system on the viability of Streptococcus mutans, serotype c. Scand. J. Dent. Res. 99, 390–396.

    PubMed  CAS  Google Scholar 

  147. Steiner, I. 2011. Herpes simplex virus encephalitis: New infection or reactivation? Curr. Opin. Neurol. 24, 268–274.

    PubMed  Article  Google Scholar 

  148. Stephens, S., Harkness, R.A., and Cockle, S.M. 1979. Lactoperoxidase activity in guinea-pig milk and saliva: Correlation in milk of lactoperoxidase with bactericidal activity against Escherichia coli. Br. J. Exp. Pathol. 60, 252–258.

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Strengert, M., Jennings, R., Davanture, S., Hayes, P., Gabriel, G., and Knaus, U.G. 2014. Mucosal reactive oxygen species are required for antiviral response: Role of DUOX in influenza a virus infection. Antioxid. Redox Signal. 20, 2695–2709.

    PubMed  Article  CAS  Google Scholar 

  150. Suzuki, S., Ogawa, M., Ohta, S., Nunomura, S., Nanri, Y., Shiraishi, H., Mitamura, Y., Yoshihara, T., Lee, J.J., and Izuhara, K. 2016. Induction of airway allergic inflammation by hypothiocyanite via epithelial cells. J. Biol. Chem. 291, 27219–27227.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. Szanto, I., Rubbia-Brandt, L., Kiss, P., Steger, K., Banfi, B., Kovari, E., Herrmann, F., Hadengue, A., and Krause, K.H. 2005. Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J. Pathol. 207, 164–176.

    PubMed  Article  CAS  Google Scholar 

  152. Tanaka, T., Murakami, S., Kumura, H., Igarashi, I., and Shimazaki, K. 2006. Parasiticidal activity of bovine lactoperoxidase against Toxoplasma gondii. Biochem. Cell. Biol. 84, 774–779.

    PubMed  Article  CAS  Google Scholar 

  153. Targovnik, H.M., Citterio, C.E., and Rivolta, C.M. 2017. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract. Res. Clin. Endocrinol. Metab. 31, 195–212.

    PubMed  Article  CAS  Google Scholar 

  154. Tenovuo, J. and Knuuttila, M.L. 1977a. The antibacterial action of the various components of the lactoperoxidase system on a cariogenic strain of Streptococcus mutans. J. Dent. Res. 56, 1603–1607.

    PubMed  Article  CAS  Google Scholar 

  155. Tenovuo, J. and Knuuttila, M.L. 1977b. Antibacterial effect of salivary peroxidases on a cariogenic strain of Streptococcus mutans. J. Dent. Res. 56, 1608–1613.

    PubMed  Article  CAS  Google Scholar 

  156. Tenovuo, J., Makinen, K.K., and Sievers, G. 1985. Antibacterial effect of lactoperoxidase and myeloperoxidase against Bacillus cereus. Antimicrob. Agents Chemother. 27, 96–101.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. Thomas, E.L. and Aune, T.M. 1978a. Lactoperoxidase, peroxide, thiocyanate antimicrobial system: Correlation of sulfhydryl oxidation with antimicrobial action. Infect. Immun. 20, 456–463.

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Thomas, E.L. and Aune, T.M. 1978b. Susceptibility of Escherichia coli to bactericidal action of lactoperoxidase, peroxide, and iodide or thiocyanate. Antimicrob. Agents Chemother. 13, 261–265.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. Thomas, E.L., Milligan, T.W., Joyner, R.E., and Jefferson, M.M. 1994. Antibacterial activity of hydrogen peroxide and the lactoperoxidase- hydrogen peroxide-thiocyanate system against oral streptococci. Infect. Immun. 62, 529–535.

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Touch, V., Hayakawa, S., Yamada, S., and Kaneko, S. 2004. Effects of a lactoperoxidase-thiocyanate-hydrogen peroxide system on Salmonella enteritidis in animal or vegetable foods. Int. J. Food Microbiol. 93, 175–183.

    PubMed  Article  CAS  Google Scholar 

  161. Tsalenchuck, Y., Tzur, T., Steiner, I., and Panet, A. 2014. Different modes of herpes simplex virus type 1 spread in brain and skin tissues. J. Neurovirol. 20, 18–27.

    PubMed  Article  Google Scholar 

  162. Ueyama, T., Sakuma, M., Ninoyu, Y., Hamada, T., Dupuy, C., Geiszt, M., Leto, T.L., and Saito, N. 2015. The extracellular a-loop of dual oxidases affects the specificity of reactive oxygen species release. J. Biol. Chem. 290, 6495–6506.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. van der Hoeven, R., Cruz, M.R., Chavez, V., and Garsin, D.A. 2015. Localization of the dual oxidase BLI-3 and characterization of its NADPH oxidase domain during infection of Caenorhabditis elegans. PLoS One 10, e0124091.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  164. van der Vliet, A. 2008. NADPH oxidases in lung biology and pathology: Host defense enzymes, and more. Free Radic. Biol. Med. 44, 938–955.

    PubMed  Article  CAS  Google Scholar 

  165. Virion, A., Michot, J.L., Deme, D., Kaniewski, J., and Pommier, J. 1984. NADPH-dependent H2O2 generation and peroxidase activity in thyroid particular fraction. Mol. Cell. Endocrin. 36, 95–105.

    Article  CAS  Google Scholar 

  166. Wang, H. and Hartnett, M.E. 2017. Roles of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in angiogenesis: Isoform-specific effects. Antioxidants (Basel) 6, 40.

    Article  CAS  Google Scholar 

  167. Weber, G., Rabbiosi, S., Zamproni, I., and Fugazzola, L. 2013. Genetic defects of hydrogen peroxide generation in the thyroid gland. J. Endocrinol. Invest. 36, 261–266.

    PubMed  CAS  Google Scholar 

  168. Welk, A., Meller, C., Schubert, R., Schwahn, C., Kramer, A., and Below, H. 2009. Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test. BMC Microbiol. 9, 134.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  169. Welliver, R.C.Sr., Checchia, P.A., Bauman, J.H., Fernandes, A.W., Mahadevia, P.J., and Hall, C.B. 2010. Fatality rates in published reports of RSV hospitalizations among high-risk and otherwise healthy children. Curr. Med. Res. Opin. 26, 2175–2181.

    PubMed  Article  Google Scholar 

  170. Whitley, R.J. 2006. Herpes simplex encephalitis: Adolescents and adults. Antiviral Res. 71, 141–148.

    PubMed  Article  CAS  Google Scholar 

  171. Wijkstrom-Frei, C., El-Chemaly, S., Ali-Rachedi, R., Gerson, C., Cobas, M.A., Forteza, R., Salathe, M., and Conner, G.E. 2003. Lactoperoxidase and human airway host defense. Am. J. Respir. Cell. Mol. Biol. 29, 206–212.

    PubMed  Article  CAS  Google Scholar 

  172. Wittek, A.E., Yeager, A.S., Au, D.S., and Hensleigh, P.A. 1984. Asymptomatic shedding of herpes simplex virus from the cervix and lesion site during pregnancy. Correlation of antepartum shedding with shedding at delivery. Am. J. Dis. Child 138, 439–442.

    PubMed  CAS  Google Scholar 

  173. Wong, J.L., Creton, R., and Wessel, G.M. 2004. The oxidative burst at fertilization is dependent upon activation of the dual oxidase UDX1. Dev. Cell. 7, 801–814.

    PubMed  Article  CAS  Google Scholar 

  174. Yang, X., Smith, A.A., Williams, M.S., and Pal, U. 2014. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of lyme disease pathogens within the vector. J. Biol. Chem. 289, 12813–12822.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  175. Zheleva, A., Michelot, D., and Zhelev, Z.D. 2000. Sensitivity of alphaamanitin to oxidation by a lactoperoxidase-hydrogen peroxide system. Toxicon 38, 1055–1063.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Balázs Rada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarr, D., Tóth, E., Gingerich, A. et al. Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol. 56, 373–386 (2018). https://doi.org/10.1007/s12275-018-7545-1

Download citation

Keywords

  • dual oxidase
  • lactoperoxidase
  • DUOX
  • LPO
  • antimicrobial
  • NADPH oxidase