Advertisement

Journal of Microbiology

, Volume 56, Issue 7, pp 472–477 | Cite as

Bacillus ferrooxidans sp. nov., an iron(II)-oxidizing bacterium isolated from paddy soil

  • Guo-Wei Zhou
  • Xiao-Ru Yang
  • Jian-Qiang Su
  • Bang-Xiao Zheng
  • Yong-Guan Zhu
Article

Abstract

An endospore-forming bacterium, designated YT-3T, was isolated from a paddy soil in Yingtan, Jiangxi, China. Cells of strain YT-3T were Gram-positive, rod-shaped, facultative anaerobic, catalase, and oxidase positive. The optimum growth temperature and pH were 30°C (ranged from 15 to 50°C) and 6.5–7.0 (ranged from 3 to 11), respectively. Analysis of the 16S rRNA gene sequence showed that strain YT-3T was affiliated to the genus Bacillus and displayed the highest similarity to that of Bacillus drentensis JCM 21707T (98.3%), followed by B. ginsengisoli JCM 17335T (97.8%) and B. fumarioli JCM 21708T (97.0%). The similarity of rpoB gene sequence between strain YT-3T and B. drentensis JCM 21707T, B. ginsengisoli JCM 17335T and B. fumarioli JCM 21708T was 80.4%, 81.5%, and 82.1%, respectively. The genomic DNA G + C content was 44.9 mol%. The predominant respiratory quinone was Menaquinone-7, and meso-diaminopimelic acid was present in the peptidoglycan layer of cell wall. The major fatty acids were C15:0 anteiso (36.2%), C14:0 iso (19.6%), C15:0 iso (17.4%), and C16:0 iso (9.8%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and ammoniac phospholipids. The DNA-DNA hybridization values between isolate YT-3T and B. drentensis (JCM 21707T), B. ginsengisoli (JCM 17335T), and B. fumarioli (JCM 21708T) were 36.3%, 30.3%, and 25.3%, respectively. On the basis of physiological, genetic and biochemical data, strain YT-3T represented a novel species of the genus Bacillus, for which the name Bacillus ferrooxidans sp. nov was proposed. The type strain is YT-3T (= KCTC 33875T = CCTCC AB 2017049T).

Keywords

Bacillus ferrooxidans novel species iron(II)-oxidizing bacteria polyphasic taxonomy paddy soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_7543_MOESM1_ESM.pdf (707 kb)
Supplementary material, approximately 712 KB.

References

  1. Akasaka, H. 2003 Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated ricefield soil. Int. J. Syst. Evol. Microbiol. 53, 1991–1998Google Scholar
  2. Baker, G.C., Smith, J.J., and Cowan, D.A. 2003 Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55, 541–555CrossRefPubMedGoogle Scholar
  3. Berenjian, A., Mahanama, R., Talbot, A., Regtop, H., Kavanagh, J., and Dehghani, F. 2012 Advances in menaquinone-7 production by Bacillus subtilis natto: Fed-batch glycerol addition. Am. J. Biochem. Biotechnol. 8, 105–110CrossRefGoogle Scholar
  4. Buck, J.D. 1982 Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993PubMedPubMedCentralGoogle Scholar
  5. Carlson, H.K., Clark, I.C., Blazewicz, S.J., Iavarone, A.T., and Coates, J.D. 2013 Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J. Bacteriol. 195, 3260–3268CrossRefPubMedPubMedCentralGoogle Scholar
  6. Estevez-Canales, M., Kuzume, A., Borjas, Z., Fueg, M., Lovley, D., Wandlowski, T., and Esteve-Nunez, A. 2015 A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ. Microbiol. Rep. 7, 219–226CrossRefPubMedGoogle Scholar
  7. Felsenstein, J. 1985 Phylogenies from gene frequencies: A statistical problem. Syst. Zool. 34, 300–311CrossRefGoogle Scholar
  8. Hedrich, S., Schlomann, M., and Johnson, D.B. 2011 The iron-oxidizing proteobacteria. Microbiology 157, 1551–1564CrossRefPubMedGoogle Scholar
  9. Heyrman, J., Vanparys, B., Logan, N.A., Balcaen, A., Rodriguez-Diaz, M., Felske, A., and De Vos, P. 2004 Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54, 47–57PubMedGoogle Scholar
  10. Hu, S.Z., Morri, K.I., Singh, P.J., Smith, M.K., and Spiro, G.T. 1993 Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes. J. Am. Chem. Soc. 115, 12446–12458CrossRefGoogle Scholar
  11. Hu, X.C., Liu, W.M., Luo, M.M., Ren, L.J., Ji, X.J., and Huang, H. 2017 Enhancing menaquinone-7 production by Bacillus natto R127 through the nutritional factors and surfactant. Appl. Biochem. Biotechnol. 182, 1–12CrossRefGoogle Scholar
  12. Johnson, J.L. and Cummins, C.S. 1972 Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica. J. Bacteriol. 109, 1047–1066PubMedPubMedCentralGoogle Scholar
  13. Klueglein, N. and Kappler, A. 2013 Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1-questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11, 180–190PubMedGoogle Scholar
  14. Klueglein, N., Picardal, F., Zedda, M., Zwiener, C., and Kappler, A. 2015 Oxidation of Fe(II)-EDTA by nitrite and by two nitratereducing Fe(II)-oxidizing Acidovorax strains. Geobiology 13, 198–207CrossRefPubMedGoogle Scholar
  15. Ko, K.S., Kim, J.W., Kim, J.M., Kim, W., Chung, S.I., Kim, I.J., and Kook, Y.H. 2004 Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect. Immun. 72, 5253–5261CrossRefPubMedPubMedCentralGoogle Scholar
  16. Larkin, M.A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., and Lopez, R. 2007 Clustal W and Clustal X version 2.0 Bioinformatics 23, 2947–2948CrossRefPubMedPubMedCentralGoogle Scholar
  17. Logan, N.A., Lebbe, L., Hoste, B., Goris, J., Forsyth, G., Heyndrickx, M., Murray, B.L., Syme, N., Wynn-Williams, D.D., and De Vos, P. 2000 Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int. J. Syst. Evol. Microbiol. 5. 1741–1753CrossRefGoogle Scholar
  18. Ma, R., Yi, F., and Xuan, L. 2000 Effects of allelochem icals on growth of Bacillus subtilis and its denitrification under anaerobic condition. Acta Ecol. Sin. 20, 452–457Google Scholar
  19. Mayr, R., Busse, H.J., Worliczek, H.L., Ehling-Schulz, M., and Scherer, S. 2006 Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int. J. Syst. Evol. Microbiol. 56, 1383–1389PubMedGoogle Scholar
  20. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984 An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241CrossRefGoogle Scholar
  21. Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., and Belyaev, S.S. 2001 Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51, 433Google Scholar
  22. Nguyen, N.L., Kim, Y.J., Hoang, V.A., Min, J.W., Liang, Z.Q., and Yang, D.C. 2013 Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 63, 855–860CrossRefPubMedGoogle Scholar
  23. Patzold, R., Keuntje, M., and Anders-von Ahlften, A. 2006 A new approach to non-destructive analysis of biofilms by confocal Raman microscopy. Anal. Bioanal. Chem. 386, 286–292CrossRefPubMedGoogle Scholar
  24. Patzold, R., Keuntje, M., Theophile, K., Muller, J., Mielcarek, E., Ngezahayo, A., and Anders-von Ahlften, A. 2008 In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72, 241–248CrossRefPubMedGoogle Scholar
  25. Pichinoty, F., Mandel, M., and Garcia, J.L. 1979 The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils. J. Gen. Microbiol. 115, 419–430CrossRefGoogle Scholar
  26. Ratering, S. and Schnell, S. 2001 Nitrate-dependent iron(II) oxidation in paddy soil. Environ. Microbiol. 3, 100–109CrossRefPubMedGoogle Scholar
  27. Shin, S. and Kahng, H.Y. 2017 Cyclobacterium sediminis sp. nov. isolated from a sea cucumber aquaculture farm and emended description of the genus Cyclobacterium. J. Microbiol. 55, 90–95PubMedGoogle Scholar
  28. Smibert, R.M. 1994 Phenotypic characterization, pp. 611–654 In Gerhardt, P., Murray, R.G., Wood, W.A. and Krieg, N.R. (eds.), Methods for general and molecular microbiology. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  29. Staneck, J.L. and Roberts, G.D. 1974 Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28, 226–231PubMedPubMedCentralGoogle Scholar
  30. Sundaram, P.A., Augustine, R., and Kannan, M. 2012 Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol. Bioprocess Eng. 17, 835–840CrossRefGoogle Scholar
  31. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0 Mol. Biol. Evol. 30, 2725–2729CrossRefGoogle Scholar
  32. Verbaendert, I., Boon, N., Vos, D.P., and Heylen, K. 2011 Denitrification is a common feature among members of the genus Bacillus. Syst. Appl. Microbiol. 34, 385–391CrossRefPubMedGoogle Scholar
  33. Wang, J.W., Zhang, J.L., Pang, H.C., Zhang, Y.B., Li, Y.Y., and Fan, J.P. 2012 Massilia flava sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 62, 580–585CrossRefPubMedGoogle Scholar
  34. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464CrossRefGoogle Scholar
  35. Weber, H.W.M., Klein, W., Muller, L., Niess, U.M., and Marahiel, M.A. 2001 Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39, 1321–1329CrossRefPubMedGoogle Scholar
  36. Yu, A., Li, Y., and Yu, J. 2005 Denitrification of a newly isolated Bacillus strain W2 and its application in aquaculture. J. Microbiol. 25, 77–81Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Guo-Wei Zhou
    • 1
    • 2
  • Xiao-Ru Yang
    • 2
  • Jian-Qiang Su
    • 2
  • Bang-Xiao Zheng
    • 2
    • 3
  • Yong-Guan Zhu
    • 1
    • 2
  1. 1.State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingP. R. China
  2. 2.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenP. R. China
  3. 3.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations