Skip to main content
Log in

Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aroca, Á., Serna, A., Gotor, C., and Romero, L.C. 2015. S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol. 168, 334–342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Attene-Ramos, M.S., Wagner, E.D., Gaskins, H.R., and Plewa, M.J. 2007. Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res. 5, 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp, R.O. Jr., Bus, J.S., Popp, J.A., Boreiko, C.J., and Andjelkovich, D.A. 1984. A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol. 13, 25–97.

    PubMed  CAS  Google Scholar 

  • Borecký, J., Maia, I.G., Costa, A.D., Ježek, P., Chaimovich, H., de Andrade, P.B., Vercesi, A.E., and Arruda, P. 2001. Functional reconstitution of Arabidopsis thaliana plant uncoupling mitochondrial protein (AtPUMP1) expressed in Escherichia coli. FEBS Lett. 505, 240–244.

    Article  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol, E., Tamarit, J., and Ros, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3, 3–8.

    PubMed  CAS  Google Scholar 

  • Calderwood, A. and Kopriva, S. 2014. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41, 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Deng, D., Zhang, N., Mustapha, A., Xu, D., Wuliji, T., Farley, M., Yang, J., Hua, B., Liu, F., and Zheng, G. 2014. Differentiating enteric Escherichia coli from environmental bacteria through the putative glucosyltransferase gene (ycjM). Water Res. 61, 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Eghbal, M.A., Pennefather, P.S., and O’Brien, P.J. 2004. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 203, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Fang, F.C. 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 99, 2818–2825.

    PubMed  CAS  Google Scholar 

  • Fu, L.H., Hu, K.D., Hu, L.Y., Li, Y.H., Hu, L.B., Yan, H., Liu, Y.S., and Zhang, H. 2014. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS One 9, e104206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giannopolitis, C.N. and Ries, S.K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309–314.

    PubMed  CAS  Google Scholar 

  • Gusarov, I., Shatalin, K., Starodubtseva, M., and Nudler, E. 2009. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325, 1380–1384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hancock, J.T. and Whiteman, M. 2014. Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol. Biochem. 78, 37–42.

    CAS  Google Scholar 

  • Hu, L.Y., Hu, S.L., Wu, J., Li, Y.H., Zheng, J.L., Wei, Z.J., Liu, J., Wang, H.L., Liu, Y.S., and Zhang, H. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. J. Agric. Food Chem. 60, 8684–8693.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi, S.G., Cooper, M., Yost, A., Paff, M., Ercan, U.K., Fridman, G., Friedman, G., Fridman, A., and Brooks, A.D. 2011. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55, 1053–1062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joyner-Matos, J., Predmore, B.L., Stein, J.R., Leeuwenburgh, C., and Julian, D. 2010. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate. Physiol. Biochem. Zool. 83, 356–365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju, Y., Zhang, W., Pei, Y., and Yang, G. 2013. H2S signaling in redox regulation of cellular functions. Can. J. Physiol. Pharmacol. 91, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Jung, D., Cho, Y., Meyer, J.N., and Di Giulio, R.T. 2009. The long amplicon quantitative PCR for DNA damage assay as a sensitive method of assessing DNA damage in the environmental model, Atlantic killifish (Fundulus heteroclitus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, H. 2011. Hydrogen sulfide: its production, release and functions. Amino Acids 41, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, Y., Goto, Y.I., and Kimura, H. 2010. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox. Signal. 12, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, Y. and Kimura, H. 2004. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 18, 1165–1167.

    Article  PubMed  CAS  Google Scholar 

  • Linden, D.R. 2014. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid. Redox Signal. 20, 818–830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M., and Hancock, J.T. 2013. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 36, 1607–1616.

    Article  PubMed  CAS  Google Scholar 

  • Mironov, A., Seregina, T., Nagornykh, M., Luhachack, L.G., Korolkova, N., Lopes, L.E., Kotova, V., Zavilgelsky, G., Shakulov, R., Shatalin, K., et al. 2017. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli. Proc. Natl. Acad. Sci. USA 114, 6022–6027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mustafa, A.K., Gadalla, M.M., Sen, N., Kim, S., Mu, W., Gazi, S.K., Barrow, R.K., Yang, G., Wang, R., and Snyder, S.H. 2009. H2S signals through protein S-sulfhydration. Sci. Signal 2, ra72.

    PubMed  PubMed Central  Google Scholar 

  • Olas, B. 2015. Hydrogen sulfide in signaling pathways. Clin. Chim. Acta 439, 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Ooi, X.J. and Tan, K.S. 2016. GSH mediates resistance to H2S toxicity in oral streptococci. Appl. Environ. Microbiol. 82, 2078–2085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietri, R., Román-Morales, E., and López-Garriga, J. 2011. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid. Redox Signal. 15, 393–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pomposiello, P.J. and Demple, B. 2001. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 19, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Renga, B. 2011. Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm. Allergy Drug Targets 10, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Schairer, D.O., Chouake, J.S., Nosanchuk, J.D., and Friedman, A.J. 2012. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3, 271–279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Semchyshyn, H., Bagnyukova, T., Storey, K., and Lushchak, V. 2005. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol. Int. 29, 898–902.

    Article  PubMed  CAS  Google Scholar 

  • Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E. 2011. H2S: a universal defense against antibiotics in bacteria. Science 334, 986–990.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., and Kimura, H. 2009. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714.

    Article  CAS  Google Scholar 

  • Tanaka, A., Mulleriyawa, R.P., and Yasu, T. 1968. Possibility of hydrogen sulfide induced iron toxicity of the rice plant. Soil Sci. Plant Nutr. 14, 1–6.

    Article  CAS  Google Scholar 

  • Tapley, D.W., Buettner G.R., and Shick J.M. 1999. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasil'eva, S.V., Stupakova, M.V., Lobysheva, I.I., Mikoyan, V.D., and Vanin, A.F. 2001. Activation of the Escherichia coli SoxRS-regulon by nitric oxide and its physiological donors. Biochem. (Mosc) 66, 984–988.

    Article  CAS  Google Scholar 

  • Wu, G., Wan, F., Fu, H., Li, N., and Gao, H. 2015. A matter of timing: contrasting effects of hydrogen sulfide on oxidative stress response in Shewanella oneidensis. J. Bacteriol. 197, 3563–3572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yakes, F.M. and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94, 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., and Luo, J.P. 2008. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J. Integr. Plant Biol. 50, 1518–1529.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Jiao, H., Jiang, C.X., Wang, S.H., Wei, Z.J., Luo, J.P., and Jones, R.L. 2010. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant. 32, 849–857.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gai-Fang Yao or Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, LH., Wei, ZZ., Hu, KD. et al. Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage. J Microbiol. 56, 238–245 (2018). https://doi.org/10.1007/s12275-018-7537-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-7537-1

Keywords

Navigation