Skip to main content

Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications

Abstract

in mass spectrometry have enabled the investigation of various biological systems by directly analyzing diverse sets of biomolecules (i.e., proteins, lipids, and carbohydrates), thus making a significant impact on the life sciences field. Over the past decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely utilized as a rapid and reliable method for the identification of microorganisms. MALDI-TOF MS has come into widespread use despite its relatively low resolving power (full width at half maximum, FWHM: < 5,000) and its incompatibility with tandem MS analysis, features with which other high-resolution mass spectrometers are equipped. Microbial identification is achieved by searching databases containing mass spectra of peptides and proteins extracted from microorganisms of interest, using scoring algorithms to match analyzed spectra with reference spectra. In this paper, we give a brief overview of the diverse applications of rapid and robust MALDI-TOF MS-based techniques for microbial identification in a variety of fields, such as clinical diagnosis and environmental and food monitoring. We also describe the fundamental principles of MALDI-TOF MS. The general specifications of the two major MS-based microbial identification systems available in the global market (BioTyper® and VITEK® MS Plus) and the distribution of these instruments in Republic of Korea are also discussed. The current review provides an understanding of this emerging microbial identification and classification technology and will help bacteriologists and cell biologists take advantage of this powerful technique.

References

  1. Avanzi, I.R., Gracioso, L.H., Baltazar, M.D., Karolski, B., Perpetuo, E.A., and do Nascimento, C.A. 2016. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ. Sci. Pollut. Res. Int. 24, 3717–3726.

    Article  CAS  Google Scholar 

  2. Barreiro, J.R., Ferreira, C.R., Sanvido, G.B., Kostrzewa, M., Maier, T., Wegemann, B., Bottcher, V., Eberlin, M.N., and dos Santos, M.V. 2010. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Dairy Sci. 93, 5661–5667.

    Article  PubMed  CAS  Google Scholar 

  3. Barreiro, J.R., Goncalves, J.L., Braga, P.A., Dibbern, A.G., Eberlin, M.N., and Veiga Dos Santos, M. 2017. Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J. Dairy Sci. 100, 2928–2934.

    Article  PubMed  CAS  Google Scholar 

  4. Bernardo, K., Pakulat, N., Macht, M., Krut, O., Seifert, H., Fleer, S., Hunger, F., and Kronke, M. 2002. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2, 747–753.

    Article  PubMed  CAS  Google Scholar 

  5. Boziaris, I.S. 2014. Novel food preservation and microbial assessment techniques. CRC Press, Taylor and Francis Group, Boca Raton. FL, USA.

    Book  Google Scholar 

  6. Buchan, B.W., Riebe, K.M., and Ledeboer, N.A. 2012. Comparison of the MALDI biotyper system using sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J. Clin. Microbiol. 50, 346–352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Burckhardt, I. and Zimmermann, S. 2011. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 49, 3321–3324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Burrer, A., Findeisen, P., Jager, E., Ghebremedhin, B., Grundt, A., Ahmad-Nejad, P., Miethke, T., and Neumaier, M. 2015. Rapid detection of cefotaxime-resistant Escherichia coli by LC-MS. Int. J. Med. Microbiol. 305, 860–864.

    Article  PubMed  CAS  Google Scholar 

  9. Cairns, D.A., Perkins, D.N., Stanley, A.J., Thompson, D., Barrett, J.H., Selby, P.J., and Banks, R.E. 2008. Integrated multi-level quality control for proteomic profiling studies using mass spectrometry. BMC Bioinformatics 9, 519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cassagne, C., Normand, A.C., Bonzon, L., L'Ollivier, C., Gautier, M., Jeddi, F., Ranque, S., and Piarroux, R. 2016. Routine identification and mixed species detection in 6,192 clinical yeast isolates. Med. Mycol. 54, 256–265.

    Article  PubMed  Google Scholar 

  11. Cherkaoui, A., Hibbs, J., Emonet, S., Tangomo, M., Girard, M., Francois, P., and Schrenzel, J. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J. Clin. Microbiol. 48, 1169–1175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Claydon, M.A., Davey, S.N., Edwards-Jones, V., and Gordon, D.B. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 14, 1584–1586.

    Article  PubMed  CAS  Google Scholar 

  13. Codrea, M.C. and Nahnsen, S. 2016. Platforms and pipelines for proteomics data analysis and management. Adv. Exp. Med. Biol. 919, 203–215.

    Article  PubMed  CAS  Google Scholar 

  14. Dayon, L., Nunez Galindo, A., Cominetti, O., Corthesy, J., and Kussmann, M. 2017. A highly automated shotgun proteomic workflow: clinical scale and robustness for biomarker discovery in blood. Methods Mol. Biol. 1619, 433–449.

    Article  PubMed  CAS  Google Scholar 

  15. Deeb, S.J., Tyanova, S., Hummel, M., Schmidt-Supprian, M., Cox, J., and Mann, M. 2015. Machine learning-based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol. Cell. Proteomics 14, 2947–2960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Doroshenko, V.M. and Cotter, R.J. 1999. Ideal velocity focusing in a reflectron time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 10, 992–999.

    Article  PubMed  CAS  Google Scholar 

  17. Drucker, D.B. 1993. Fast atom bombardment mass spectrometry of phospholipids for bacterial chemotaxonomy. Vol. 541, pp. 18–35. In ACS Symposium Series. American Chemical Society, Washington, DC, USA.

    Google Scholar 

  18. Du, Z., Yang, R., Guo, Z., Song, Y., and Wang, J. 2002. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-offlight mass spectrometry. Anal. Chem. 74, 5487–5491.

    Article  PubMed  CAS  Google Scholar 

  19. Dubois, D., Leyssene, D., Chacornac, J.P., Kostrzewa, M., Schmit, P.O., Talon, R., Bonnet, R., and Delmas, J. 2010. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 941–945.

    Article  PubMed  CAS  Google Scholar 

  20. Eddabra, R., Prevost, G., and Scheftel, J.M. 2012. Rapid discrimination of environmental Vibrio by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol. Res. 167, 226–230.

    Article  PubMed  CAS  Google Scholar 

  21. Edwards-Jones, V., Claydon, M.A., Evason, D.J., Walker, J., Fox, A.J., and Gordon, D.B. 2000. Rapid discrimination between methicillinsensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 49, 295–300.

    Article  PubMed  CAS  Google Scholar 

  22. Emami, K., Nelson, A., Hack, E., Zhang, J., Green, D.H., Caldwell, G.S., and Mesbahi, E. 2016. MALDI-TOF Mass spectrometry discriminates known species and marine environmental isolates of Pseudoalteromonas. Front. Microbiol. 7, 104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fenselau, C. 1993. Mass spectrometry for characterization of microorganisms. Vol. 541, pp. 1–7. In ACS Symposium Series. American Chemical Society, Washington, DC, USA.

    Article  CAS  Google Scholar 

  24. Ferreira, L., Sanchez-Juanes, F., Gonzalez-Avila, M., Cembrero-Fucinos, D., Herrero-Hernandez, A., Gonzalez-Buitrago, J.M., and Munoz-Bellido, J.L. 2010. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 2110–2115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Flaudrops, C., Armstrong, N., Raoult, D., and Chabrière, E. 2015. Determination of the animal origin of meat and gelatin by MALDITOF-MS. J. Food Compos. Anal. 41, 104–112.

    Article  CAS  Google Scholar 

  26. Flory, M.R., Griffin, T.J., Martin, D., and Aebersold, R. 2002. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 20, S23–S29.

    Article  PubMed  CAS  Google Scholar 

  27. Freiwald, A. and Sauer, S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732–742.

    Article  PubMed  CAS  Google Scholar 

  28. Garcia-Descalzo, L., Garcıa-Lopez, E., Moreno, A.M., Alcazar, A., Baquero, F., and Cid, C. 2012. Mass spectrometry for direct identification of biosignatures and microorganisms in earth analogs of Mars. Planet. Space Sci. 72, 138–145.

    Article  Google Scholar 

  29. Graham, R., Graham, C., and McMullan, G. 2007. Microbial proteomics: a mass spectrometry primer for biologists. Microb. Cell. Fact. 6, 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Haigh, J.D., Green, I.M., Ball, D., Eydmann, M., Millar, M., and Wilks, M. 2013. Rapid identification of bacteria from bioMerieux BacT/ALERT blood culture bottles by MALDI-TOF MS. Br. J. Biomed. Sci. 70, 149–155.

    Article  PubMed  CAS  Google Scholar 

  31. Hardman, M. and Makarov, A.A. 2003. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75, 1699–1705.

    Article  PubMed  CAS  Google Scholar 

  32. Harvey, D.J. 1999. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass. Spectrom. Rev. 18, 349–450.

    Article  PubMed  CAS  Google Scholar 

  33. Holland, R.D., Wilkes, J.G., Rafii, F., Sutherland, J.B., Persons, C.C., Voorhees, K.J., and Lay, J.O. Jr. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrixassisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 10, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  34. Hrabak, J., Chudackova, E., and Walkova, R. 2013. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin. Microbiol. Rev. 26, 103–114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hrabak, J., Walkova, R., Studentova, V., Chudackova, E., and Bergerova, T. 2011. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 49, 3222–3227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Huang, A.M., Newton, D., Kunapuli, A., Gandhi, T.N., Washer, L.L., Isip, J., Collins, C.D., and Nagel, J.L. 2013. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin. Infect. Dis. 57, 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  37. Huang, B., Zhang, L., Zhang, W., Liao, K., Zhang, S., Zhang, Z., Ma, X., Chen, J., Zhang, X., Qu, P., et al. 2017. Direct detection and identification of bacterial pathogens from urine with optimized specimen processing and enhanced testing algorithm. J. Clin. Microbiol. 55, 1488–1495.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jarman, K.H., Cebula, S.T., Saenz, A.J., Petersen, C.E., Valentine, N.B., Kingsley, M.T., and Wahl, K.L. 2000. An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72, 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  39. Jenkins, C., Ling, C.L., Ciesielczuk, H.L., Lockwood, J., Hopkins, S., McHugh, T.D., Gillespie, S.H., and Kibbler, C.C. 2012. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. J. Med. Microbiol. 61, 483–488.

    Article  PubMed  CAS  Google Scholar 

  40. Josten, M., Reif, M., Szekat, C., Al-Sabti, N., Roemer, T., Sparbier, K., Kostrzewa, M., Rohde, H., Sahl, H.G., and Bierbaum, G. 2013. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J. Clin. Microbiol. 51, 1809–1817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Karas, M., Gluckmann, M., and Schafer, J. 2000. Ionization in matrixassisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass. Spectrom. 35, 1–12.

    Article  PubMed  CAS  Google Scholar 

  42. Kicman, A.T., Parkin, M.C., and Iles, R.K. 2007. An introduction to mass spectrometry based proteomics-detection and characterization of gonadotropins and related molecules. Mol. Cell. Endocrinol. 260–262, 212–227.

    Article  PubMed  CAS  Google Scholar 

  43. Kim, Y., Park, K.G., Lee, K., and Park, Y.J. 2015. Direct identification of urinary tract pathogens from urine samples using the vitek MS system based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Ann. Lab. Med. 35, 416–422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kok, J., Thomas, L.C., Olma, T., Chen, S.C., and Iredell, J.R. 2011. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization SepsityperTM and time of flight mass spectrometry. PLoS One 6, e23285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kollef, M.H. 2008. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin. Infect. Dis. 47 Suppl 1, S3–S13.

    Article  PubMed  CAS  Google Scholar 

  46. Kopcakova, A., Stramova, Z., Kvasnova, S., Godany, A., Perhacova, Z., and Pristas, P. 2014. Need for database extension for reliable identification of bacterial from extreme environments using MALDI TOF mass spectrometry. Chem. Pap. 68, 1435–1442.

    Article  CAS  Google Scholar 

  47. Kostrzewa, M., Sparbier, K., Maier, T., and Schubert, S. 2013. MALDITOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin. Appl. 7, 767–778.

    Article  PubMed  CAS  Google Scholar 

  48. Krishnamurthy, T. and Ross, P.L. 1996. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass. Spectrom. 10, 1992–1996.

    Article  PubMed  CAS  Google Scholar 

  49. Levesque, S., Dufresne, P.J., Soualhine, H., Domingo, M.C., Bekal, S., Lefebvre, B., and Tremblay, C. 2015. A side by side comparison of bruker biotyper and VITEK MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One 10, e0144878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lewis, J.K., Wei, J., and Siuzdak, G. 2000. Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. John Wiley and Sons Ltd., Chichester, UK.

    Google Scholar 

  51. Mahe, P., Arsac, M., Chatellier, S., Monnin, V., Perrot, N., Mailler, S., Girard, V., Ramjeet, M., Surre, J., Lacroix, B., et al. 2014. Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum. Bioinformatics 30, 1280–1286.

    Article  PubMed  CAS  Google Scholar 

  52. Martiny, D., Busson, L., Wybo, I., El Haj, R.A., Dediste, A., and Vandenberg, O. 2012. Comparison of the microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 50, 1313–1325.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matsuo, T. and Seyama, Y. 2000. Introduction to modern biological mass spectrometry. J. Mass. Spectrom. 35, 114–130.

    Article  PubMed  CAS  Google Scholar 

  54. Maugh 2nd, T.H. 1977. Ion cyclotron resonance: fourier transform mass spectrometry. Science 195, 1314–1315.

    Article  PubMed  Google Scholar 

  55. McLafferty, F.W. 1981. Tandem mass spectrometry. Science 214, 280–287.

    Article  PubMed  CAS  Google Scholar 

  56. Mellmann, A., Cloud, J., Maier, T., Keckevoet, U., Ramminger, I., Iwen, P., Dunn, J., Hall, G., Wilson, D., Lasala, P., et al. 2008. Evaluation of matrix-assisted laser desorption ionization-time-offlight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46, 1946–1954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Moussaoui, W., Jaulhac, B., Hoffmann, A.M., Ludes, B., Kostrzewa, M., Riegel, P., and Prevost, G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin. Microbiol. Infect. 16, 1631–1638.

    Article  PubMed  CAS  Google Scholar 

  58. Nakano, S., Matsumura, Y., Ito, Y., Fujisawa, T., Chang, B., Suga, S., Kato, K., Yunoki, T., Hotta, G., Noguchi, T., et al. 2015. Development and evaluation of MALDI-TOF MS-based serotyping for Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2191–2198.

    Article  PubMed  CAS  Google Scholar 

  59. Ouedraogo, R., Daumas, A., Ghigo, E., Capo, C., Mege, J.L., and Textoris, J. 2012. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages. J. Proteomics 75, 5523–5532.

    Article  PubMed  CAS  Google Scholar 

  60. Ouedraogo, R., Flaudrops, C., Ben Amara, A., Capo, C., Raoult, D., and Mege, J.L. 2010. Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 5, e13691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ouedraogo, R., Textoris, J., Daumas, A., Capo, C., and Mege, J.L. 2013. Whole-cell MALDI-TOF mass spectrometry: a tool for immune cell analysis and characterization. Humana Press, Totowa, NJ, USA.

    Google Scholar 

  62. Perez, K.K., Olsen, R.J., Musick, W.L., Cernoch, P.L., Davis, J.R., Land, G.A., Peterson, L.E., and Musser, J.M. 2013. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch. Pathol. Lab. Med. 137, 1247–1254.

    Article  PubMed  Google Scholar 

  63. Petrotchenko, E.V. and Borchers, C.H. 2014. Modern mass spectrometry-based structural proteomics. Adv. Protein Chem. Struct. Biol. 95, 193–213.

    Article  PubMed  CAS  Google Scholar 

  64. Porte, L., Garcia, P., Braun, S., Ulloa, M.T., Lafourcade, M., Montana, A., Miranda, C., Acosta-Jamett, G., and Weitzel, T. 2017. Headto-head comparison of Microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One 12, e0177929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Portevin, D., Pfluger, V., Otieno, P., Brunisholz, R., Vogel, G., and Daubenberger, C. 2015. Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands. BMC Biotechnol. 15, 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ruelle, V., El Moualij, B., Zorzi, W., Ledent, P., and Pauw, E.D. 2004. Rapid identification of environmental bacterial strains by matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 18, 2013–2019.

    Article  PubMed  CAS  Google Scholar 

  67. Sala-Comorera, L., Vilaro, C., Galofre, B., Blanch, A.R., and Garcia-Aljaro, C. 2016. Use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for bacterial monitoring in routine analysis at a drinking water treatment plant. Int. J. Hyg. Environ. Health 219, 577–584.

    Article  PubMed  CAS  Google Scholar 

  68. Sanchez-Juanes, F., Siller Ruiz, M., Moreno Obregon, F., Criado Gonzalez, M., Hernandez Egido, S., de Frutos Serna, M., Gonzalez-Buitrago, J.M., and Munoz-Bellido, J.L. 2014. Pretreatment of urine samples with SDS improves direct identification of urinary tract pathogens with matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 52, 335–338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Santos, I.C., Martin, M.S., Carlton, D.D., Amorim, C.L., Castro, P.M.L., Hildenbrand, Z.L., and Schug, K.A. 2017. MALDI-TOF MS for the identification of cultivable organic-degrading bacteria in contaminated groundwater near unconventional natural gas extraction sites. Microorganisms 5, 47.

    Article  PubMed Central  Google Scholar 

  70. Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., and Geider, K. 2008. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3, e2843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sauer, S. and Kliem, M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8, 74–82.

    Article  PubMed  CAS  Google Scholar 

  72. Schrottner, P., Gunzer, F., Schuppel, J., and Rudolph, W.W. 2016. Identification of rare bacterial pathogens by 16S rRNA gene sequencing and MALDI-TOF MS. J. Vis. Exp. 113, e53176.

    Google Scholar 

  73. Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J.M., and Raoult, D. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49, 543–551.

    Article  PubMed  CAS  Google Scholar 

  74. Siciliano, R.A., d’Esposito, D., and Mazzeo, M.F. 2016. Food authentication by MALDI MS: MALDI-TOF MS analysis of fish species, pp. 263–277. In Cramer, R. (ed.), Advances in MALDI and laser-induced soft ionization mass spectrometry. Springer, Cham, Switzerland.

    Google Scholar 

  75. Singhal, N., Kumar, M., Kanaujia, P.K., and Virdi, J.S. 2015. MALDITOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791.

    Google Scholar 

  76. Spinali, S., van Belkum, A., Goering, R.V., Girard, V., Welker, M., Van Nuenen, M., Pincus, D.H., Arsac, M., and Durand, G. 2015. Microbial typing by matrix-assisted laser desorption ionizationtime of flight mass spectrometry: do we need guidance for data interpretation? J. Clin. Microbiol. 53, 760–765.

    Article  CAS  Google Scholar 

  77. Stets, M.I., Pinto, A.S.Jr., Huergo, L.F., de Souza, E.M., Guimaraes, V.F., Alves, A.C., Steffens, M.B., Monteiro, R.A., Pedrosa Fde, O., and Cruz, L.M. 2013. Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J. Biotechnol. 165, 167–174.

    Article  PubMed  CAS  Google Scholar 

  78. Szabados, F., Michels, M., Kaase, M., and Gatermann, S. 2011. The sensitivity of direct identification from positive BacT/ALERT (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin. Microbiol. Infect. 17, 192–195.

    Article  PubMed  CAS  Google Scholar 

  79. Tadros, M. and Petrich, A. 2013. Evaluation of MALDI-TOF mass spectrometry and sepsityper kit for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital. Can. J. Infect. Dis. Med. Microbiol. 24, 191–194.

    PubMed  PubMed Central  Article  Google Scholar 

  80. The UniProt, C. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169.

    Article  CAS  Google Scholar 

  81. Timperio, A.M., Gorrasi, S., Zolla, L., and Fenice, M. 2017. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 12, e0181860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Torsvik, V., Ovreas, L., and Thingstad, T.F. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296, 1064–1066.

    Article  PubMed  CAS  Google Scholar 

  83. Uhlik, O., Strejcek, M., Junkova, P., Sanda, M., Hroudova, M., Vlcek, C., Mackova, M., and Macek, T. 2011. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometryand MALDI biotyper-based identification of cultured biphenylmetabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77, 6858–6866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Vidova, V. and Spacil, Z. 2017. A review on mass spectrometrybased quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23.

    Article  PubMed  CAS  Google Scholar 

  85. von Wintzingerode, F., Bocker, S., Schlotelburg, C., Chiu, N.H., Storm, N., Jurinke, C., Cantor, C.R., Gobel, U.B., and van den Boom, D. 2002. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl. Acad. Sci. USA 99, 7039–7044.

    Article  CAS  Google Scholar 

  86. Wang, X.H., Zhang, G., Fan, Y.Y., Yang, X., Sui, W.J., and Lu, X.X. 2013. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods 92, 231–235.

    Article  PubMed  CAS  Google Scholar 

  87. Wu, C.C. and MacCoss, M.J. 2002. Shotgun proteomics: tools for the analysis of complex biological systems. Curr. Opin. Mol. Ther. 4, 242–250.

    PubMed  CAS  Google Scholar 

  88. Zhang, X., Scalf, M., Berggren, T.W., Westphall, M.S., and Smith, L.M. 2006. Identification of mammalian cell lines using MALDITOF and LC-ESI-MS/MS mass spectrometry. J. Am. Soc. Mass. Spectrom. 17, 490–499.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Soon Jang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jang, KS., Kim, Y.H. Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications. J Microbiol. 56, 209–216 (2018). https://doi.org/10.1007/s12275-018-7457-0

Download citation

Keywords

  • MALDI-TOF
  • microbial identification
  • clinical
  • environmental
  • whole-cell typing