Abstract
in mass spectrometry have enabled the investigation of various biological systems by directly analyzing diverse sets of biomolecules (i.e., proteins, lipids, and carbohydrates), thus making a significant impact on the life sciences field. Over the past decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely utilized as a rapid and reliable method for the identification of microorganisms. MALDI-TOF MS has come into widespread use despite its relatively low resolving power (full width at half maximum, FWHM: < 5,000) and its incompatibility with tandem MS analysis, features with which other high-resolution mass spectrometers are equipped. Microbial identification is achieved by searching databases containing mass spectra of peptides and proteins extracted from microorganisms of interest, using scoring algorithms to match analyzed spectra with reference spectra. In this paper, we give a brief overview of the diverse applications of rapid and robust MALDI-TOF MS-based techniques for microbial identification in a variety of fields, such as clinical diagnosis and environmental and food monitoring. We also describe the fundamental principles of MALDI-TOF MS. The general specifications of the two major MS-based microbial identification systems available in the global market (BioTyper® and VITEK® MS Plus) and the distribution of these instruments in Republic of Korea are also discussed. The current review provides an understanding of this emerging microbial identification and classification technology and will help bacteriologists and cell biologists take advantage of this powerful technique.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Avanzi, I.R., Gracioso, L.H., Baltazar, M.D., Karolski, B., Perpetuo, E.A., and do Nascimento, C.A. 2016. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ. Sci. Pollut. Res. Int. 24, 3717–3726.
Barreiro, J.R., Ferreira, C.R., Sanvido, G.B., Kostrzewa, M., Maier, T., Wegemann, B., Bottcher, V., Eberlin, M.N., and dos Santos, M.V. 2010. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Dairy Sci. 93, 5661–5667.
Barreiro, J.R., Goncalves, J.L., Braga, P.A., Dibbern, A.G., Eberlin, M.N., and Veiga Dos Santos, M. 2017. Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J. Dairy Sci. 100, 2928–2934.
Bernardo, K., Pakulat, N., Macht, M., Krut, O., Seifert, H., Fleer, S., Hunger, F., and Kronke, M. 2002. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2, 747–753.
Boziaris, I.S. 2014. Novel food preservation and microbial assessment techniques. CRC Press, Taylor and Francis Group, Boca Raton. FL, USA.
Buchan, B.W., Riebe, K.M., and Ledeboer, N.A. 2012. Comparison of the MALDI biotyper system using sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J. Clin. Microbiol. 50, 346–352.
Burckhardt, I. and Zimmermann, S. 2011. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 49, 3321–3324.
Burrer, A., Findeisen, P., Jager, E., Ghebremedhin, B., Grundt, A., Ahmad-Nejad, P., Miethke, T., and Neumaier, M. 2015. Rapid detection of cefotaxime-resistant Escherichia coli by LC-MS. Int. J. Med. Microbiol. 305, 860–864.
Cairns, D.A., Perkins, D.N., Stanley, A.J., Thompson, D., Barrett, J.H., Selby, P.J., and Banks, R.E. 2008. Integrated multi-level quality control for proteomic profiling studies using mass spectrometry. BMC Bioinformatics 9, 519.
Cassagne, C., Normand, A.C., Bonzon, L., L'Ollivier, C., Gautier, M., Jeddi, F., Ranque, S., and Piarroux, R. 2016. Routine identification and mixed species detection in 6,192 clinical yeast isolates. Med. Mycol. 54, 256–265.
Cherkaoui, A., Hibbs, J., Emonet, S., Tangomo, M., Girard, M., Francois, P., and Schrenzel, J. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J. Clin. Microbiol. 48, 1169–1175.
Claydon, M.A., Davey, S.N., Edwards-Jones, V., and Gordon, D.B. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 14, 1584–1586.
Codrea, M.C. and Nahnsen, S. 2016. Platforms and pipelines for proteomics data analysis and management. Adv. Exp. Med. Biol. 919, 203–215.
Dayon, L., Nunez Galindo, A., Cominetti, O., Corthesy, J., and Kussmann, M. 2017. A highly automated shotgun proteomic workflow: clinical scale and robustness for biomarker discovery in blood. Methods Mol. Biol. 1619, 433–449.
Deeb, S.J., Tyanova, S., Hummel, M., Schmidt-Supprian, M., Cox, J., and Mann, M. 2015. Machine learning-based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol. Cell. Proteomics 14, 2947–2960.
Doroshenko, V.M. and Cotter, R.J. 1999. Ideal velocity focusing in a reflectron time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 10, 992–999.
Drucker, D.B. 1993. Fast atom bombardment mass spectrometry of phospholipids for bacterial chemotaxonomy. Vol. 541, pp. 18–35. In ACS Symposium Series. American Chemical Society, Washington, DC, USA.
Du, Z., Yang, R., Guo, Z., Song, Y., and Wang, J. 2002. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-offlight mass spectrometry. Anal. Chem. 74, 5487–5491.
Dubois, D., Leyssene, D., Chacornac, J.P., Kostrzewa, M., Schmit, P.O., Talon, R., Bonnet, R., and Delmas, J. 2010. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 941–945.
Eddabra, R., Prevost, G., and Scheftel, J.M. 2012. Rapid discrimination of environmental Vibrio by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol. Res. 167, 226–230.
Edwards-Jones, V., Claydon, M.A., Evason, D.J., Walker, J., Fox, A.J., and Gordon, D.B. 2000. Rapid discrimination between methicillinsensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 49, 295–300.
Emami, K., Nelson, A., Hack, E., Zhang, J., Green, D.H., Caldwell, G.S., and Mesbahi, E. 2016. MALDI-TOF Mass spectrometry discriminates known species and marine environmental isolates of Pseudoalteromonas. Front. Microbiol. 7, 104.
Fenselau, C. 1993. Mass spectrometry for characterization of microorganisms. Vol. 541, pp. 1–7. In ACS Symposium Series. American Chemical Society, Washington, DC, USA.
Ferreira, L., Sanchez-Juanes, F., Gonzalez-Avila, M., Cembrero-Fucinos, D., Herrero-Hernandez, A., Gonzalez-Buitrago, J.M., and Munoz-Bellido, J.L. 2010. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 2110–2115.
Flaudrops, C., Armstrong, N., Raoult, D., and Chabrière, E. 2015. Determination of the animal origin of meat and gelatin by MALDITOF-MS. J. Food Compos. Anal. 41, 104–112.
Flory, M.R., Griffin, T.J., Martin, D., and Aebersold, R. 2002. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 20, S23–S29.
Freiwald, A. and Sauer, S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732–742.
Garcia-Descalzo, L., Garcıa-Lopez, E., Moreno, A.M., Alcazar, A., Baquero, F., and Cid, C. 2012. Mass spectrometry for direct identification of biosignatures and microorganisms in earth analogs of Mars. Planet. Space Sci. 72, 138–145.
Graham, R., Graham, C., and McMullan, G. 2007. Microbial proteomics: a mass spectrometry primer for biologists. Microb. Cell. Fact. 6, 26.
Haigh, J.D., Green, I.M., Ball, D., Eydmann, M., Millar, M., and Wilks, M. 2013. Rapid identification of bacteria from bioMerieux BacT/ALERT blood culture bottles by MALDI-TOF MS. Br. J. Biomed. Sci. 70, 149–155.
Hardman, M. and Makarov, A.A. 2003. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75, 1699–1705.
Harvey, D.J. 1999. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass. Spectrom. Rev. 18, 349–450.
Holland, R.D., Wilkes, J.G., Rafii, F., Sutherland, J.B., Persons, C.C., Voorhees, K.J., and Lay, J.O. Jr. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrixassisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 10, 1227–1232.
Hrabak, J., Chudackova, E., and Walkova, R. 2013. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin. Microbiol. Rev. 26, 103–114.
Hrabak, J., Walkova, R., Studentova, V., Chudackova, E., and Bergerova, T. 2011. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 49, 3222–3227.
Huang, A.M., Newton, D., Kunapuli, A., Gandhi, T.N., Washer, L.L., Isip, J., Collins, C.D., and Nagel, J.L. 2013. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin. Infect. Dis. 57, 1237–1245.
Huang, B., Zhang, L., Zhang, W., Liao, K., Zhang, S., Zhang, Z., Ma, X., Chen, J., Zhang, X., Qu, P., et al. 2017. Direct detection and identification of bacterial pathogens from urine with optimized specimen processing and enhanced testing algorithm. J. Clin. Microbiol. 55, 1488–1495.
Jarman, K.H., Cebula, S.T., Saenz, A.J., Petersen, C.E., Valentine, N.B., Kingsley, M.T., and Wahl, K.L. 2000. An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72, 1217–1223.
Jenkins, C., Ling, C.L., Ciesielczuk, H.L., Lockwood, J., Hopkins, S., McHugh, T.D., Gillespie, S.H., and Kibbler, C.C. 2012. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. J. Med. Microbiol. 61, 483–488.
Josten, M., Reif, M., Szekat, C., Al-Sabti, N., Roemer, T., Sparbier, K., Kostrzewa, M., Rohde, H., Sahl, H.G., and Bierbaum, G. 2013. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J. Clin. Microbiol. 51, 1809–1817.
Karas, M., Gluckmann, M., and Schafer, J. 2000. Ionization in matrixassisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass. Spectrom. 35, 1–12.
Kicman, A.T., Parkin, M.C., and Iles, R.K. 2007. An introduction to mass spectrometry based proteomics-detection and characterization of gonadotropins and related molecules. Mol. Cell. Endocrinol. 260–262, 212–227.
Kim, Y., Park, K.G., Lee, K., and Park, Y.J. 2015. Direct identification of urinary tract pathogens from urine samples using the vitek MS system based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Ann. Lab. Med. 35, 416–422.
Kok, J., Thomas, L.C., Olma, T., Chen, S.C., and Iredell, J.R. 2011. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization SepsityperTM and time of flight mass spectrometry. PLoS One 6, e23285.
Kollef, M.H. 2008. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin. Infect. Dis. 47 Suppl 1, S3–S13.
Kopcakova, A., Stramova, Z., Kvasnova, S., Godany, A., Perhacova, Z., and Pristas, P. 2014. Need for database extension for reliable identification of bacterial from extreme environments using MALDI TOF mass spectrometry. Chem. Pap. 68, 1435–1442.
Kostrzewa, M., Sparbier, K., Maier, T., and Schubert, S. 2013. MALDITOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin. Appl. 7, 767–778.
Krishnamurthy, T. and Ross, P.L. 1996. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass. Spectrom. 10, 1992–1996.
Levesque, S., Dufresne, P.J., Soualhine, H., Domingo, M.C., Bekal, S., Lefebvre, B., and Tremblay, C. 2015. A side by side comparison of bruker biotyper and VITEK MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One 10, e0144878.
Lewis, J.K., Wei, J., and Siuzdak, G. 2000. Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. John Wiley and Sons Ltd., Chichester, UK.
Mahe, P., Arsac, M., Chatellier, S., Monnin, V., Perrot, N., Mailler, S., Girard, V., Ramjeet, M., Surre, J., Lacroix, B., et al. 2014. Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum. Bioinformatics 30, 1280–1286.
Martiny, D., Busson, L., Wybo, I., El Haj, R.A., Dediste, A., and Vandenberg, O. 2012. Comparison of the microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 50, 1313–1325.
Matsuo, T. and Seyama, Y. 2000. Introduction to modern biological mass spectrometry. J. Mass. Spectrom. 35, 114–130.
Maugh 2nd, T.H. 1977. Ion cyclotron resonance: fourier transform mass spectrometry. Science 195, 1314–1315.
McLafferty, F.W. 1981. Tandem mass spectrometry. Science 214, 280–287.
Mellmann, A., Cloud, J., Maier, T., Keckevoet, U., Ramminger, I., Iwen, P., Dunn, J., Hall, G., Wilson, D., Lasala, P., et al. 2008. Evaluation of matrix-assisted laser desorption ionization-time-offlight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46, 1946–1954.
Moussaoui, W., Jaulhac, B., Hoffmann, A.M., Ludes, B., Kostrzewa, M., Riegel, P., and Prevost, G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin. Microbiol. Infect. 16, 1631–1638.
Nakano, S., Matsumura, Y., Ito, Y., Fujisawa, T., Chang, B., Suga, S., Kato, K., Yunoki, T., Hotta, G., Noguchi, T., et al. 2015. Development and evaluation of MALDI-TOF MS-based serotyping for Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2191–2198.
Ouedraogo, R., Daumas, A., Ghigo, E., Capo, C., Mege, J.L., and Textoris, J. 2012. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages. J. Proteomics 75, 5523–5532.
Ouedraogo, R., Flaudrops, C., Ben Amara, A., Capo, C., Raoult, D., and Mege, J.L. 2010. Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 5, e13691.
Ouedraogo, R., Textoris, J., Daumas, A., Capo, C., and Mege, J.L. 2013. Whole-cell MALDI-TOF mass spectrometry: a tool for immune cell analysis and characterization. Humana Press, Totowa, NJ, USA.
Perez, K.K., Olsen, R.J., Musick, W.L., Cernoch, P.L., Davis, J.R., Land, G.A., Peterson, L.E., and Musser, J.M. 2013. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch. Pathol. Lab. Med. 137, 1247–1254.
Petrotchenko, E.V. and Borchers, C.H. 2014. Modern mass spectrometry-based structural proteomics. Adv. Protein Chem. Struct. Biol. 95, 193–213.
Porte, L., Garcia, P., Braun, S., Ulloa, M.T., Lafourcade, M., Montana, A., Miranda, C., Acosta-Jamett, G., and Weitzel, T. 2017. Headto-head comparison of Microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One 12, e0177929.
Portevin, D., Pfluger, V., Otieno, P., Brunisholz, R., Vogel, G., and Daubenberger, C. 2015. Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands. BMC Biotechnol. 15, 24.
Ruelle, V., El Moualij, B., Zorzi, W., Ledent, P., and Pauw, E.D. 2004. Rapid identification of environmental bacterial strains by matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 18, 2013–2019.
Sala-Comorera, L., Vilaro, C., Galofre, B., Blanch, A.R., and Garcia-Aljaro, C. 2016. Use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for bacterial monitoring in routine analysis at a drinking water treatment plant. Int. J. Hyg. Environ. Health 219, 577–584.
Sanchez-Juanes, F., Siller Ruiz, M., Moreno Obregon, F., Criado Gonzalez, M., Hernandez Egido, S., de Frutos Serna, M., Gonzalez-Buitrago, J.M., and Munoz-Bellido, J.L. 2014. Pretreatment of urine samples with SDS improves direct identification of urinary tract pathogens with matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 52, 335–338.
Santos, I.C., Martin, M.S., Carlton, D.D., Amorim, C.L., Castro, P.M.L., Hildenbrand, Z.L., and Schug, K.A. 2017. MALDI-TOF MS for the identification of cultivable organic-degrading bacteria in contaminated groundwater near unconventional natural gas extraction sites. Microorganisms 5, 47.
Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., and Geider, K. 2008. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3, e2843.
Sauer, S. and Kliem, M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8, 74–82.
Schrottner, P., Gunzer, F., Schuppel, J., and Rudolph, W.W. 2016. Identification of rare bacterial pathogens by 16S rRNA gene sequencing and MALDI-TOF MS. J. Vis. Exp. 113, e53176.
Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J.M., and Raoult, D. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49, 543–551.
Siciliano, R.A., d’Esposito, D., and Mazzeo, M.F. 2016. Food authentication by MALDI MS: MALDI-TOF MS analysis of fish species, pp. 263–277. In Cramer, R. (ed.), Advances in MALDI and laser-induced soft ionization mass spectrometry. Springer, Cham, Switzerland.
Singhal, N., Kumar, M., Kanaujia, P.K., and Virdi, J.S. 2015. MALDITOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791.
Spinali, S., van Belkum, A., Goering, R.V., Girard, V., Welker, M., Van Nuenen, M., Pincus, D.H., Arsac, M., and Durand, G. 2015. Microbial typing by matrix-assisted laser desorption ionizationtime of flight mass spectrometry: do we need guidance for data interpretation? J. Clin. Microbiol. 53, 760–765.
Stets, M.I., Pinto, A.S.Jr., Huergo, L.F., de Souza, E.M., Guimaraes, V.F., Alves, A.C., Steffens, M.B., Monteiro, R.A., Pedrosa Fde, O., and Cruz, L.M. 2013. Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J. Biotechnol. 165, 167–174.
Szabados, F., Michels, M., Kaase, M., and Gatermann, S. 2011. The sensitivity of direct identification from positive BacT/ALERT (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin. Microbiol. Infect. 17, 192–195.
Tadros, M. and Petrich, A. 2013. Evaluation of MALDI-TOF mass spectrometry and sepsityper kit for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital. Can. J. Infect. Dis. Med. Microbiol. 24, 191–194.
The UniProt, C. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169.
Timperio, A.M., Gorrasi, S., Zolla, L., and Fenice, M. 2017. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 12, e0181860.
Torsvik, V., Ovreas, L., and Thingstad, T.F. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296, 1064–1066.
Uhlik, O., Strejcek, M., Junkova, P., Sanda, M., Hroudova, M., Vlcek, C., Mackova, M., and Macek, T. 2011. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometryand MALDI biotyper-based identification of cultured biphenylmetabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77, 6858–6866.
Vidova, V. and Spacil, Z. 2017. A review on mass spectrometrybased quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23.
von Wintzingerode, F., Bocker, S., Schlotelburg, C., Chiu, N.H., Storm, N., Jurinke, C., Cantor, C.R., Gobel, U.B., and van den Boom, D. 2002. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl. Acad. Sci. USA 99, 7039–7044.
Wang, X.H., Zhang, G., Fan, Y.Y., Yang, X., Sui, W.J., and Lu, X.X. 2013. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods 92, 231–235.
Wu, C.C. and MacCoss, M.J. 2002. Shotgun proteomics: tools for the analysis of complex biological systems. Curr. Opin. Mol. Ther. 4, 242–250.
Zhang, X., Scalf, M., Berggren, T.W., Westphall, M.S., and Smith, L.M. 2006. Identification of mammalian cell lines using MALDITOF and LC-ESI-MS/MS mass spectrometry. J. Am. Soc. Mass. Spectrom. 17, 490–499.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jang, KS., Kim, Y.H. Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications. J Microbiol. 56, 209–216 (2018). https://doi.org/10.1007/s12275-018-7457-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-018-7457-0