Advertisement

Journal of Microbiology

, Volume 56, Issue 4, pp 209–216 | Cite as

Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications

  • Kyoung-Soon Jang
  • Young Hwan Kim
Minireview
  • 239 Downloads

Abstract

in mass spectrometry have enabled the investigation of various biological systems by directly analyzing diverse sets of biomolecules (i.e., proteins, lipids, and carbohydrates), thus making a significant impact on the life sciences field. Over the past decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely utilized as a rapid and reliable method for the identification of microorganisms. MALDI-TOF MS has come into widespread use despite its relatively low resolving power (full width at half maximum, FWHM: < 5,000) and its incompatibility with tandem MS analysis, features with which other high-resolution mass spectrometers are equipped. Microbial identification is achieved by searching databases containing mass spectra of peptides and proteins extracted from microorganisms of interest, using scoring algorithms to match analyzed spectra with reference spectra. In this paper, we give a brief overview of the diverse applications of rapid and robust MALDI-TOF MS-based techniques for microbial identification in a variety of fields, such as clinical diagnosis and environmental and food monitoring. We also describe the fundamental principles of MALDI-TOF MS. The general specifications of the two major MS-based microbial identification systems available in the global market (BioTyper® and VITEK® MS Plus) and the distribution of these instruments in Republic of Korea are also discussed. The current review provides an understanding of this emerging microbial identification and classification technology and will help bacteriologists and cell biologists take advantage of this powerful technique.

Keywords

MALDI-TOF microbial identification clinical environmental whole-cell typing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avanzi, I.R., Gracioso, L.H., Baltazar, M.D., Karolski, B., Perpetuo, E.A., and do Nascimento, C.A. 2016. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ. Sci. Pollut. Res. Int. 24, 3717–3726.CrossRefGoogle Scholar
  2. Barreiro, J.R., Ferreira, C.R., Sanvido, G.B., Kostrzewa, M., Maier, T., Wegemann, B., Bottcher, V., Eberlin, M.N., and dos Santos, M.V. 2010. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Dairy Sci. 93, 5661–5667.CrossRefPubMedGoogle Scholar
  3. Barreiro, J.R., Goncalves, J.L., Braga, P.A., Dibbern, A.G., Eberlin, M.N., and Veiga Dos Santos, M. 2017. Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J. Dairy Sci. 100, 2928–2934.CrossRefPubMedGoogle Scholar
  4. Bernardo, K., Pakulat, N., Macht, M., Krut, O., Seifert, H., Fleer, S., Hunger, F., and Kronke, M. 2002. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2, 747–753.CrossRefPubMedGoogle Scholar
  5. Boziaris, I.S. 2014. Novel food preservation and microbial assessment techniques. CRC Press, Taylor and Francis Group, Boca Raton. FL, USA.CrossRefGoogle Scholar
  6. Buchan, B.W., Riebe, K.M., and Ledeboer, N.A. 2012. Comparison of the MALDI biotyper system using sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J. Clin. Microbiol. 50, 346–352.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burckhardt, I. and Zimmermann, S. 2011. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 49, 3321–3324.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burrer, A., Findeisen, P., Jager, E., Ghebremedhin, B., Grundt, A., Ahmad-Nejad, P., Miethke, T., and Neumaier, M. 2015. Rapid detection of cefotaxime-resistant Escherichia coli by LC-MS. Int. J. Med. Microbiol. 305, 860–864.CrossRefPubMedGoogle Scholar
  9. Cairns, D.A., Perkins, D.N., Stanley, A.J., Thompson, D., Barrett, J.H., Selby, P.J., and Banks, R.E. 2008. Integrated multi-level quality control for proteomic profiling studies using mass spectrometry. BMC Bioinformatics 9, 519.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cassagne, C., Normand, A.C., Bonzon, L., L'Ollivier, C., Gautier, M., Jeddi, F., Ranque, S., and Piarroux, R. 2016. Routine identification and mixed species detection in 6,192 clinical yeast isolates. Med. Mycol. 54, 256–265.CrossRefPubMedGoogle Scholar
  11. Cherkaoui, A., Hibbs, J., Emonet, S., Tangomo, M., Girard, M., Francois, P., and Schrenzel, J. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J. Clin. Microbiol. 48, 1169–1175.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Claydon, M.A., Davey, S.N., Edwards-Jones, V., and Gordon, D.B. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 14, 1584–1586.CrossRefPubMedGoogle Scholar
  13. Codrea, M.C. and Nahnsen, S. 2016. Platforms and pipelines for proteomics data analysis and management. Adv. Exp. Med. Biol. 919, 203–215.CrossRefPubMedGoogle Scholar
  14. Dayon, L., Nunez Galindo, A., Cominetti, O., Corthesy, J., and Kussmann, M. 2017. A highly automated shotgun proteomic workflow: clinical scale and robustness for biomarker discovery in blood. Methods Mol. Biol. 1619, 433–449.CrossRefPubMedGoogle Scholar
  15. Deeb, S.J., Tyanova, S., Hummel, M., Schmidt-Supprian, M., Cox, J., and Mann, M. 2015. Machine learning-based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol. Cell. Proteomics 14, 2947–2960.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Doroshenko, V.M. and Cotter, R.J. 1999. Ideal velocity focusing in a reflectron time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 10, 992–999.CrossRefPubMedGoogle Scholar
  17. Drucker, D.B. 1993. Fast atom bombardment mass spectrometry of phospholipids for bacterial chemotaxonomy. Vol. 541, pp. 18–35. In ACS Symposium Series. American Chemical Society, Washington, DC, USA.Google Scholar
  18. Du, Z., Yang, R., Guo, Z., Song, Y., and Wang, J. 2002. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-offlight mass spectrometry. Anal. Chem. 74, 5487–5491.CrossRefPubMedGoogle Scholar
  19. Dubois, D., Leyssene, D., Chacornac, J.P., Kostrzewa, M., Schmit, P.O., Talon, R., Bonnet, R., and Delmas, J. 2010. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 941–945.CrossRefPubMedGoogle Scholar
  20. Eddabra, R., Prevost, G., and Scheftel, J.M. 2012. Rapid discrimination of environmental Vibrio by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol. Res. 167, 226–230.CrossRefPubMedGoogle Scholar
  21. Edwards-Jones, V., Claydon, M.A., Evason, D.J., Walker, J., Fox, A.J., and Gordon, D.B. 2000. Rapid discrimination between methicillinsensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 49, 295–300.CrossRefPubMedGoogle Scholar
  22. Emami, K., Nelson, A., Hack, E., Zhang, J., Green, D.H., Caldwell, G.S., and Mesbahi, E. 2016. MALDI-TOF Mass spectrometry discriminates known species and marine environmental isolates of Pseudoalteromonas. Front. Microbiol. 7, 104.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fenselau, C. 1993. Mass spectrometry for characterization of microorganisms. Vol. 541, pp. 1–7. In ACS Symposium Series. American Chemical Society, Washington, DC, USA.CrossRefGoogle Scholar
  24. Ferreira, L., Sanchez-Juanes, F., Gonzalez-Avila, M., Cembrero-Fucinos, D., Herrero-Hernandez, A., Gonzalez-Buitrago, J.M., and Munoz-Bellido, J.L. 2010. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 2110–2115.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Flaudrops, C., Armstrong, N., Raoult, D., and Chabrière, E. 2015. Determination of the animal origin of meat and gelatin by MALDITOF-MS. J. Food Compos. Anal. 41, 104–112.CrossRefGoogle Scholar
  26. Flory, M.R., Griffin, T.J., Martin, D., and Aebersold, R. 2002. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 20, S23–S29.CrossRefPubMedGoogle Scholar
  27. Freiwald, A. and Sauer, S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732–742.CrossRefPubMedGoogle Scholar
  28. Garcia-Descalzo, L., Garcıa-Lopez, E., Moreno, A.M., Alcazar, A., Baquero, F., and Cid, C. 2012. Mass spectrometry for direct identification of biosignatures and microorganisms in earth analogs of Mars. Planet. Space Sci. 72, 138–145.CrossRefGoogle Scholar
  29. Graham, R., Graham, C., and McMullan, G. 2007. Microbial proteomics: a mass spectrometry primer for biologists. Microb. Cell. Fact. 6, 26.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Haigh, J.D., Green, I.M., Ball, D., Eydmann, M., Millar, M., and Wilks, M. 2013. Rapid identification of bacteria from bioMerieux BacT/ALERT blood culture bottles by MALDI-TOF MS. Br. J. Biomed. Sci. 70, 149–155.CrossRefPubMedGoogle Scholar
  31. Hardman, M. and Makarov, A.A. 2003. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75, 1699–1705.CrossRefPubMedGoogle Scholar
  32. Harvey, D.J. 1999. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass. Spectrom. Rev. 18, 349–450.CrossRefPubMedGoogle Scholar
  33. Holland, R.D., Wilkes, J.G., Rafii, F., Sutherland, J.B., Persons, C.C., Voorhees, K.J., and Lay, J.O. Jr. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrixassisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 10, 1227–1232.CrossRefPubMedGoogle Scholar
  34. Hrabak, J., Chudackova, E., and Walkova, R. 2013. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin. Microbiol. Rev. 26, 103–114.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hrabak, J., Walkova, R., Studentova, V., Chudackova, E., and Bergerova, T. 2011. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 49, 3222–3227.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Huang, A.M., Newton, D., Kunapuli, A., Gandhi, T.N., Washer, L.L., Isip, J., Collins, C.D., and Nagel, J.L. 2013. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin. Infect. Dis. 57, 1237–1245.CrossRefPubMedGoogle Scholar
  37. Huang, B., Zhang, L., Zhang, W., Liao, K., Zhang, S., Zhang, Z., Ma, X., Chen, J., Zhang, X., Qu, P., et al. 2017. Direct detection and identification of bacterial pathogens from urine with optimized specimen processing and enhanced testing algorithm. J. Clin. Microbiol. 55, 1488–1495.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jarman, K.H., Cebula, S.T., Saenz, A.J., Petersen, C.E., Valentine, N.B., Kingsley, M.T., and Wahl, K.L. 2000. An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72, 1217–1223.CrossRefPubMedGoogle Scholar
  39. Jenkins, C., Ling, C.L., Ciesielczuk, H.L., Lockwood, J., Hopkins, S., McHugh, T.D., Gillespie, S.H., and Kibbler, C.C. 2012. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. J. Med. Microbiol. 61, 483–488.CrossRefPubMedGoogle Scholar
  40. Josten, M., Reif, M., Szekat, C., Al-Sabti, N., Roemer, T., Sparbier, K., Kostrzewa, M., Rohde, H., Sahl, H.G., and Bierbaum, G. 2013. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J. Clin. Microbiol. 51, 1809–1817.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Karas, M., Gluckmann, M., and Schafer, J. 2000. Ionization in matrixassisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass. Spectrom. 35, 1–12.CrossRefPubMedGoogle Scholar
  42. Kicman, A.T., Parkin, M.C., and Iles, R.K. 2007. An introduction to mass spectrometry based proteomics-detection and characterization of gonadotropins and related molecules. Mol. Cell. Endocrinol. 260–262, 212–227.CrossRefPubMedGoogle Scholar
  43. Kim, Y., Park, K.G., Lee, K., and Park, Y.J. 2015. Direct identification of urinary tract pathogens from urine samples using the vitek MS system based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Ann. Lab. Med. 35, 416–422.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kok, J., Thomas, L.C., Olma, T., Chen, S.C., and Iredell, J.R. 2011. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization SepsityperTM and time of flight mass spectrometry. PLoS One 6, e23285.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kollef, M.H. 2008. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin. Infect. Dis. 47 Suppl 1, S3–S13.CrossRefPubMedGoogle Scholar
  46. Kopcakova, A., Stramova, Z., Kvasnova, S., Godany, A., Perhacova, Z., and Pristas, P. 2014. Need for database extension for reliable identification of bacterial from extreme environments using MALDI TOF mass spectrometry. Chem. Pap. 68, 1435–1442.CrossRefGoogle Scholar
  47. Kostrzewa, M., Sparbier, K., Maier, T., and Schubert, S. 2013. MALDITOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin. Appl. 7, 767–778.CrossRefPubMedGoogle Scholar
  48. Krishnamurthy, T. and Ross, P.L. 1996. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass. Spectrom. 10, 1992–1996.CrossRefPubMedGoogle Scholar
  49. Levesque, S., Dufresne, P.J., Soualhine, H., Domingo, M.C., Bekal, S., Lefebvre, B., and Tremblay, C. 2015. A side by side comparison of bruker biotyper and VITEK MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One 10, e0144878.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lewis, J.K., Wei, J., and Siuzdak, G. 2000. Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. John Wiley and Sons Ltd., Chichester, UK.Google Scholar
  51. Mahe, P., Arsac, M., Chatellier, S., Monnin, V., Perrot, N., Mailler, S., Girard, V., Ramjeet, M., Surre, J., Lacroix, B., et al. 2014. Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum. Bioinformatics 30, 1280–1286.CrossRefPubMedGoogle Scholar
  52. Martiny, D., Busson, L., Wybo, I., El Haj, R.A., Dediste, A., and Vandenberg, O. 2012. Comparison of the microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 50, 1313–1325.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Matsuo, T. and Seyama, Y. 2000. Introduction to modern biological mass spectrometry. J. Mass. Spectrom. 35, 114–130.CrossRefPubMedGoogle Scholar
  54. Maugh 2nd, T.H. 1977. Ion cyclotron resonance: fourier transform mass spectrometry. Science 195, 1314–1315.CrossRefPubMedGoogle Scholar
  55. McLafferty, F.W. 1981. Tandem mass spectrometry. Science 214, 280–287.CrossRefPubMedGoogle Scholar
  56. Mellmann, A., Cloud, J., Maier, T., Keckevoet, U., Ramminger, I., Iwen, P., Dunn, J., Hall, G., Wilson, D., Lasala, P., et al. 2008. Evaluation of matrix-assisted laser desorption ionization-time-offlight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46, 1946–1954.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moussaoui, W., Jaulhac, B., Hoffmann, A.M., Ludes, B., Kostrzewa, M., Riegel, P., and Prevost, G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin. Microbiol. Infect. 16, 1631–1638.CrossRefPubMedGoogle Scholar
  58. Nakano, S., Matsumura, Y., Ito, Y., Fujisawa, T., Chang, B., Suga, S., Kato, K., Yunoki, T., Hotta, G., Noguchi, T., et al. 2015. Development and evaluation of MALDI-TOF MS-based serotyping for Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2191–2198.CrossRefPubMedGoogle Scholar
  59. Ouedraogo, R., Daumas, A., Ghigo, E., Capo, C., Mege, J.L., and Textoris, J. 2012. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages. J. Proteomics 75, 5523–5532.CrossRefPubMedGoogle Scholar
  60. Ouedraogo, R., Flaudrops, C., Ben Amara, A., Capo, C., Raoult, D., and Mege, J.L. 2010. Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 5, e13691.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ouedraogo, R., Textoris, J., Daumas, A., Capo, C., and Mege, J.L. 2013. Whole-cell MALDI-TOF mass spectrometry: a tool for immune cell analysis and characterization. Humana Press, Totowa, NJ, USA.Google Scholar
  62. Perez, K.K., Olsen, R.J., Musick, W.L., Cernoch, P.L., Davis, J.R., Land, G.A., Peterson, L.E., and Musser, J.M. 2013. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch. Pathol. Lab. Med. 137, 1247–1254.CrossRefPubMedGoogle Scholar
  63. Petrotchenko, E.V. and Borchers, C.H. 2014. Modern mass spectrometry-based structural proteomics. Adv. Protein Chem. Struct. Biol. 95, 193–213.CrossRefPubMedGoogle Scholar
  64. Porte, L., Garcia, P., Braun, S., Ulloa, M.T., Lafourcade, M., Montana, A., Miranda, C., Acosta-Jamett, G., and Weitzel, T. 2017. Headto-head comparison of Microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One 12, e0177929.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Portevin, D., Pfluger, V., Otieno, P., Brunisholz, R., Vogel, G., and Daubenberger, C. 2015. Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands. BMC Biotechnol. 15, 24.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ruelle, V., El Moualij, B., Zorzi, W., Ledent, P., and Pauw, E.D. 2004. Rapid identification of environmental bacterial strains by matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 18, 2013–2019.CrossRefPubMedGoogle Scholar
  67. Sala-Comorera, L., Vilaro, C., Galofre, B., Blanch, A.R., and Garcia-Aljaro, C. 2016. Use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for bacterial monitoring in routine analysis at a drinking water treatment plant. Int. J. Hyg. Environ. Health 219, 577–584.CrossRefPubMedGoogle Scholar
  68. Sanchez-Juanes, F., Siller Ruiz, M., Moreno Obregon, F., Criado Gonzalez, M., Hernandez Egido, S., de Frutos Serna, M., Gonzalez-Buitrago, J.M., and Munoz-Bellido, J.L. 2014. Pretreatment of urine samples with SDS improves direct identification of urinary tract pathogens with matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 52, 335–338.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Santos, I.C., Martin, M.S., Carlton, D.D., Amorim, C.L., Castro, P.M.L., Hildenbrand, Z.L., and Schug, K.A. 2017. MALDI-TOF MS for the identification of cultivable organic-degrading bacteria in contaminated groundwater near unconventional natural gas extraction sites. Microorganisms 5, 47.CrossRefPubMedCentralGoogle Scholar
  70. Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., and Geider, K. 2008. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3, e2843.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sauer, S. and Kliem, M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8, 74–82.CrossRefPubMedGoogle Scholar
  72. Schrottner, P., Gunzer, F., Schuppel, J., and Rudolph, W.W. 2016. Identification of rare bacterial pathogens by 16S rRNA gene sequencing and MALDI-TOF MS. J. Vis. Exp. 113, e53176.Google Scholar
  73. Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J.M., and Raoult, D. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49, 543–551.CrossRefPubMedGoogle Scholar
  74. Siciliano, R.A., d’Esposito, D., and Mazzeo, M.F. 2016. Food authentication by MALDI MS: MALDI-TOF MS analysis of fish species, pp. 263–277. In Cramer, R. (ed.), Advances in MALDI and laser-induced soft ionization mass spectrometry. Springer, Cham, Switzerland.Google Scholar
  75. Singhal, N., Kumar, M., Kanaujia, P.K., and Virdi, J.S. 2015. MALDITOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791.Google Scholar
  76. Spinali, S., van Belkum, A., Goering, R.V., Girard, V., Welker, M., Van Nuenen, M., Pincus, D.H., Arsac, M., and Durand, G. 2015. Microbial typing by matrix-assisted laser desorption ionizationtime of flight mass spectrometry: do we need guidance for data interpretation? J. Clin. Microbiol. 53, 760–765.CrossRefGoogle Scholar
  77. Stets, M.I., Pinto, A.S.Jr., Huergo, L.F., de Souza, E.M., Guimaraes, V.F., Alves, A.C., Steffens, M.B., Monteiro, R.A., Pedrosa Fde, O., and Cruz, L.M. 2013. Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J. Biotechnol. 165, 167–174.CrossRefPubMedGoogle Scholar
  78. Szabados, F., Michels, M., Kaase, M., and Gatermann, S. 2011. The sensitivity of direct identification from positive BacT/ALERT (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin. Microbiol. Infect. 17, 192–195.CrossRefPubMedGoogle Scholar
  79. Tadros, M. and Petrich, A. 2013. Evaluation of MALDI-TOF mass spectrometry and sepsityper kit for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital. Can. J. Infect. Dis. Med. Microbiol. 24, 191–194.PubMedPubMedCentralGoogle Scholar
  80. The UniProt, C. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169.CrossRefGoogle Scholar
  81. Timperio, A.M., Gorrasi, S., Zolla, L., and Fenice, M. 2017. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 12, e0181860.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Torsvik, V., Ovreas, L., and Thingstad, T.F. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296, 1064–1066.CrossRefPubMedGoogle Scholar
  83. Uhlik, O., Strejcek, M., Junkova, P., Sanda, M., Hroudova, M., Vlcek, C., Mackova, M., and Macek, T. 2011. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometryand MALDI biotyper-based identification of cultured biphenylmetabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77, 6858–6866.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Vidova, V. and Spacil, Z. 2017. A review on mass spectrometrybased quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23.CrossRefPubMedGoogle Scholar
  85. von Wintzingerode, F., Bocker, S., Schlotelburg, C., Chiu, N.H., Storm, N., Jurinke, C., Cantor, C.R., Gobel, U.B., and van den Boom, D. 2002. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl. Acad. Sci. USA 99, 7039–7044.CrossRefGoogle Scholar
  86. Wang, X.H., Zhang, G., Fan, Y.Y., Yang, X., Sui, W.J., and Lu, X.X. 2013. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods 92, 231–235.CrossRefPubMedGoogle Scholar
  87. Wu, C.C. and MacCoss, M.J. 2002. Shotgun proteomics: tools for the analysis of complex biological systems. Curr. Opin. Mol. Ther. 4, 242–250.PubMedGoogle Scholar
  88. Zhang, X., Scalf, M., Berggren, T.W., Westphall, M.S., and Smith, L.M. 2006. Identification of mammalian cell lines using MALDITOF and LC-ESI-MS/MS mass spectrometry. J. Am. Soc. Mass. Spectrom. 17, 490–499.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Biomedical Omics GroupKorea Basic Science InstituteCheongjuRepublic of Korea
  2. 2.Department of Bio-Analytical ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
  3. 3.Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations