Advertisement

Journal of Microbiology

, Volume 56, Issue 4, pp 223–230 | Cite as

Taxonomic description and genome sequence of Halobacillus marinus sp. nov., a novel strain isolated from Chilika Lake, India

  • Ananta N. Panda
  • Samir Ranjan Mishra
  • Lopamudra Ray
  • Surajit Das
  • Gurdeep Rastogi
  • Ajit Kumar Pattanaik
  • Tapan Kumar Adhya
  • Mrutyunjay Suar
  • Vishakha Raina
Microbial Systematics and Evolutionary Microbiology

Abstract

moderately halophilic spore forming, motile, Gram-positive, rod-shaped bacterial strain designated as KGW1T was isolated from water sample of Chilika Lake and characterized taxonomically using polyphasic approach. The strain grew in the presence of 0–25% (w/v) NaCl in marine salt agar media, hydrolyzes casein, and gelatin and shows presence of alkaline proteases. The major cell wall menaquinone was MK7 and major cellular fatty acids were anteiso-C15:0 (44.89%), anteiso-C17:0 (6.18%), isoC15:0 (19.38%), and iso-C16:0 (7.39%). Several chemotaxonomic features conform the isolate be a member of genus Halobacillus. The isolate KGW1T contained A1γ meso-Dpm-direct type of peptidoglycan which is different from its phylogenetically closest neighbours. The 16S rRNA gene sequence based phylogenetic analysis also revealed the strain KGW1T was affiliated to the genus Halobacillus and sequence similarity between the isolated strain and the type strains of Halobacillus species were found closest to, H. dabanensis D-8 DSM 18199T (99.08%) and H. faecis IGA7-4 DSM 21559T (99.01%), H. trueperi SL-5 DSM 10404T (98.94%). The in silico DDH showed that the values in a range of 14.2–17.5% with the most closest strain H. dabanensis D-8 DSM 18199T and other type strains of the genus Halobacillus for which whole genome sequence is reported. DNA-DNA relatedness between strain KGW1T and the closest type strain Halobacillus trueperi DSM 10404T was 11.75% (± 1.15). The draft genome sequence includes 3,683,819 bases and comprises of 3898 predicted coding sequences with a G + C content of 46.98%. Thus, the significant distinctiveness supported by phenotypic and genotypic data with its closest neighbors and other closely related species confirm the strain KGW1T to be classified as a novel species within the genus Halobacillus, for which the name Halobacillus marinus sp. nov. is proposed. The type strain is KGW1T (= DSM 29522 = JCM 30443).

Keywords

Halobacillus proteases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_7387_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.14 MB.

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  2. An, S.Y., Kanoh, K., Kasai, H., Goto, K., and Yokota, A. 2007. Halobacillus faecis sp. nov., in a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan. Int. J. Syst. Evol. Microbiol. 57, 2476–2479.CrossRefPubMedGoogle Scholar
  3. Auch, A.F., Klenk, H.P., and Göker, M. 2010. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand. Genomic Sci. 2, 142–148.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aygan, A. and Arikan, B. 2007. Mini Review An overview on bacterial motility detection. Int. J. Agri. Biol. 9, 193–196.Google Scholar
  5. Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.CrossRefPubMedGoogle Scholar
  6. Cashion, P., Holder-Franklin, M.A., McCully, J., and Franklin, M. 1977. A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81, 461–466.CrossRefPubMedGoogle Scholar
  7. Chen, Y.G., Liu, Z.X., Zhang, Y.Q., Zhang, Y.X., Tang, S.K., Borrathybay, E., Li, W.J., and Cui, X.L. 2009a. Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 96, 99–107.CrossRefPubMedGoogle Scholar
  8. Chen, Y.G., Zhang, Y.Q., Liu, Z.X., Zhuang, D.C., Klenk, H.P., Tang, S.K., Cui, X.L., and Li, W.J. 2009b. Halobacillus salsuginis sp. nov., a moderately halophilic bacterium from a subterranean brine. Int. J. Syst. Evol. Microbiol. 59, 2505–2509.CrossRefPubMedGoogle Scholar
  9. Collee, J.G. and Miles, R.S. 1989. Tests for identification of bacteria, pp. 141–160. In Collee, J.G., Duguid, J.P., Fraser, A.G., and Marmion, B.P. (eds.), Mackie and McCartney’s practical medical microbiology, 13th ed. Churchill Livingstone, Edinburgh, UK.Google Scholar
  10. De Ley, J., Cattoir, H., and Reynaerts, A. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142.CrossRefPubMedGoogle Scholar
  11. Fahmy, F., Mayer, F., and Claus, D. 1985. Endospores of Sporosarcina halophila: characteristics and ultrastructure. Arch. Microbiol. 140, 338–342.CrossRefGoogle Scholar
  12. Felsenstein, J. 1985. Confidence limits on phylogenetic: an approach using the bootstrap. Evolution 39, 783–791.CrossRefPubMedGoogle Scholar
  13. Fitch, W.M. 1971. Towards defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  14. Galardini, M., Biondi, E.G., Bazzicalupo, M., and Mengoni, A. 2011. CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol. Med. 6, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garland, J.L. and Millis, A.L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization. Appl. Environ. Microbiol. 57, 2351–2359.PubMedPubMedCentralGoogle Scholar
  16. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., and Ward, J.M. 1985. Preparation of chromosomal, plasmid and phage DNA, pp. 79–80. In genetic manipulation of streptomyces: a laboratory manual, John Innes Foundation, Norwich, UK.Google Scholar
  17. Hua, N.P., Kanekiyo, A., Fujikura, K., Yasuda, H., and Nagamura, T. 2007. Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methanecold seep. Int. J. Syst. Evol. Microbiol. 57, 1243–1249.CrossRefPubMedGoogle Scholar
  18. Huss, V.A.R., Festl, H., and Schleifer, K.H. 1983. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4, 184–192.CrossRefPubMedGoogle Scholar
  19. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.CrossRefPubMedGoogle Scholar
  20. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  21. Kumar, S., Glen Stecher, G., and Tamura, K. 2016. MEGA 7: Molecular evolutionary genetics analysis version 7.0. Mol. Biol. Evol. 33, 1870–1874.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. 2007. Clustal W and Clustal X version 2. Bioinformatics 23, 2947–2948.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu, W.Y., Zeng, J., Wang, L., Dou, Y.T., and Yang, S.S. 2005. Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int. J. Syst. Evol. Microbiol. 55, 1991–1996.CrossRefPubMedGoogle Scholar
  24. Logan, N.A., Berge, O., Bishop, H., Busse, H.J., De Vos, P., Fritze, D., Heyndrickx, M., Kämpfer, P., Rabinovitch, L., Salkinoja-Salonen, M.S., et al. 2009. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int. J. Syst. Evol. Microbiol. 59, 2114–2121.CrossRefPubMedGoogle Scholar
  25. Meier-Kolthoff, J.P., Göker, M., Spröer, C., and Klenk, H.P. 2013. When should a DDH experiment be mandatory in microbial taxonomy? Arch. Microbiol. 195, 413–418.Google Scholar
  26. Mellado, E., Sánchez-Porro, C., Martín, S., and Ventosa, A. 2004. Extracellular hydrolytic enzymes produced by moderately halophilic bacteria, pp. 285–295. In Ventosa, A. (ed.), Halophilic microorganisms. Springer-Verlag, Heidelberg, Berlin, Germany.Google Scholar
  27. Nunes, I., Tiago, I., Pires, A.L., da Costa, M.S., and Veríssimo, A. 2006. Paucisalibacillus globulus gen. nov., sp. nov., a Gram-positive bacterium isolated from potting soil. Int. J. Syst. Evol. Microbiol. 56, 1841–1845.CrossRefPubMedGoogle Scholar
  28. Panda, A.N., Mishra, S.R., Ray, L., Sahu, N., Acharya, A., Jadhao, S., Suar, M., Adhya, T.K., Rastogi, G., Pattnaik, A.K., et al. 2016. Draft genome sequence of Halobacillus sp. strain KGW1, a moderately halophilic and alkaline protease-producing bacterium isolated from the rhizospheric region of Phragmites karka from Chilika Lake, Odisha, India. Genome Announc. 4, e00361–16.PubMedGoogle Scholar
  29. Quesada, E., Ventosa, A., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1984. Deleyahalophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol. 34, 287–292.CrossRefGoogle Scholar
  30. Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1980. Isolation of extreamly halophilic bacteria able to grow in defined inorganic media withsingle carbon sources. J. Gen. Microbiol. 119, 535–538.Google Scholar
  31. Romano, I., Finore, I., Nicolaus, G., Huertas, F.J., Lama, L., Nicolaus, B., and Poli, A. 2008. Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int. J. Syst. Evol. Microbiol. 58, 886–890.CrossRefPubMedGoogle Scholar
  32. Rzhetsky, A. and Mei, M. 1992. A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 9, 945–967.Google Scholar
  33. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  34. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 20, 16.Google Scholar
  35. Schumann, P. 2011. Peptidoglycan structure, pp. 101–129. In Rainey, F. and Oren, A. (eds.), Taxonomy of prokaryotes, methods in microbiology, Vol. 38. Academic Press, London, UK.Google Scholar
  36. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticusto the genus paenibacillus and emended description of genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.CrossRefPubMedGoogle Scholar
  37. Soto-Ramírez, N., Sánchez-Porro, C., Rosas-Padilla, S., Almodóvar, K., Jiménez, G., Machado-Rodríguez, M., Zapata, M., Venrosa, A., and Montalvo-Rordíguez, R. 2008. Halobacillus mangrovei sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans. Int. J. Syst. Evol. Microbiol. 58, 125–130.CrossRefPubMedGoogle Scholar
  38. Spring, S., Ludwig, W., Marquez, M.C., Ventosa, A., and Schleifer, K.H. 1996. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. Int. J. Syst. Bacteriol. 46, 492–496.CrossRefGoogle Scholar
  39. Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.Google Scholar
  40. Tindall, B.J. 1990a. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13, 128–130.CrossRefGoogle Scholar
  41. Tindall, B.J. 1990b. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66, 199–202.CrossRefGoogle Scholar
  42. Tindall, B.J., Rosselló-Móra, R., Busse, H.J., Ludwig, W., and Kämpfer, P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60, 249–266.CrossRefPubMedGoogle Scholar
  43. Tindall, B.J., Sikorski, J., Smibert, R.M., and Kreig, N.R. 2007. Phenotypic characterization and the principles of comparative systematics, pp. 330–393. In Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., and Snyder, L.R. (eds.), Methods for general and molecular microbiology, 3rd ed. American Society for Microbiology, Washington, DC, USA.Google Scholar
  44. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1982. Numerical taxonomy of moderately halophilic Gram-negative rods. J. Gen. Microbiol. 128, 1959–1968.Google Scholar
  45. Wainø, M., Tindall, B.J., Schumann, P., and Ingvorsen, K. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49, 821–831.CrossRefPubMedGoogle Scholar
  46. Wang, K., Zhang, L., Yang, Y., Pan, Y., Meng, L., Liu, H., Hong, S., Huang, H., and Jiang, J. 2015. Halobacillus andaensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soil. Int. J. Syst. Evol. Microbiol. 65, 1908–1914.CrossRefPubMedGoogle Scholar
  47. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  48. Yoon, J.H., Kang, S.J., Jung, Y.T., and Oh, T.K. 2007. Halobacillus campisalis sp. nov., Containing meso-diaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus. Int. J. Syst. Evol. Microbiol. 57, 2021–2025.CrossRefPubMedGoogle Scholar
  49. Yoon, J.H., Kang, S.J., and Oh, T.K. 2008. Halobacillus seohaensis sp. nov., isolated from a marine solar saltern in Korea. Int. J. Syst. Evol. Microbiol. 58, 622–627.CrossRefPubMedGoogle Scholar
  50. Yoon, J.H., Kang, K.H., Oh, T.K., and Park, Y.H. 2004. Halobacillus locisalis sp. nov., A halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8, 23–28.CrossRefPubMedGoogle Scholar
  51. Yoon, J.H., Kang, K.H., Oh, T.K., and Park, Y.H. 2005. Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int. J. Syst. Evol. Microbiol. 55, 2413–2417.CrossRefPubMedGoogle Scholar
  52. Yoon, J.H., Kang, K.H., and Park, Y.H. 2003. Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 53, 687–693.CrossRefPubMedGoogle Scholar
  53. Yoon, J.H., Weiss, N., Lee, K.C., Lee, I.S., Kang, K.H., and Park, Y.H. 2001. Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51, 2087–2093.CrossRefPubMedGoogle Scholar
  54. Zerbino, D. and Birney, E. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Ananta N. Panda
    • 1
  • Samir Ranjan Mishra
    • 1
  • Lopamudra Ray
    • 1
    • 2
  • Surajit Das
    • 3
  • Gurdeep Rastogi
    • 4
  • Ajit Kumar Pattanaik
    • 4
  • Tapan Kumar Adhya
    • 1
  • Mrutyunjay Suar
    • 1
  • Vishakha Raina
    • 1
  1. 1.School of BiotechnologyKIIT UniversityBhubaneswarIndia
  2. 2.School of LawKIIT UniversityBhubaneswarIndia
  3. 3.Department of Life ScienceNational Institute of TechnologyRourkelaIndia
  4. 4.Wetland Research and Training CentreChilika Development AuthorityBarkul, BalugaonIndia

Personalised recommendations