Skip to main content
Log in

Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov.

Journal of Microbiology Aims and scope Submit manuscript

Cite this article

Abstract

A taxonomic study was conducted on BR7-21T, a bacterial strain isolated from the soil of a ginseng field in Baekdu Mountain. Comparative studies of the 16S rRNA gene sequence showed that the isolate was most closely related to Conexibacter woesei DSM 14684T, Solirubrobacter pauli ATCC BAA-492T, Patulibacter minatonensis JCM 12834T, with 93.8%, 92.4%, and 91.5% sequence similarity, respectively; each genus represented a family in the order Solirubrobacterales. Strain BR7-21T was Gram-reaction positive, non-spore forming, aerobic, non-motile, and short rod-shaped. It grew well on half-strength R2A medium. The G + C content of the genomic DNA was 73.9%. It contained meso-diaminopimelic acid in the cell wall and the major menaquinones were MK-7(H4) and MK-8(H4). The major fatty acids were summarized as (C16:1ω7c/iso-C15:0 2-OH), iso-C16:0, and C17:0 cyclo. On the basis of polyphasic evidence, it was proposed that strain BR7-21T should be placed in a new genus and species, for which the name Baekduia soli gen. nov., sp. nov. was proposed with the type strain BR7-21T (= KCTC 22257T = LMG 24797T). The family Baekduiaceae fam. nov. is proposed to encompass the genus Baekduia gen. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Furlong, M.A., Singleton, D.R., Coleman, D.C., and Whitman, W.B. 2002. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68, 1265–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hasegawa, T., Takizawa, M., and Tanida, S. 1983. A rapid analysis for chemical grouping of aerobic actinomycetes. J. Gen. Appl. Microbiol. 29, 319–322.

    Article  CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Im, W.T., Kim, S.Y., Liu, Q.M., Yang, J.E., Lee, S.T., and Yi, T.H. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48, 623–628.

    Article  CAS  PubMed  Google Scholar 

  • Im, W.T., Xu, J.L., Liu, Q.M., Jin, F.X., and Lee, S.T. 2008. Analysis of cultured microbial community of soil of a ginseng field of the Baekdu Mt. and liaoning province using low-nutrient agar plates. Abstract N090, Proceedings of the Annual Meeting of the American Society of Microbiology, American Society of Microbiology, Boston, USA.

    Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid sequencing techniques in bacterial systematics, Wiley, New York, USA.

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • MIDI. 1999. Sherlock, microbial identification system, operating manual, version 3.0. MIDI, Inc., Newark, DE., USA.

  • Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M., and Donadio, S. 2003. Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int. J. Syst. Evol. Microbiol. 53, 569–576.

    Article  CAS  PubMed  Google Scholar 

  • Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology, Wiley, New York, USA.

  • Nawrocki, E.P., Kolbe, D.L., and Eddy, S.R. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy, G.S. and Garcia-Pichel, F. 2009. Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int. J. Syst. Evol. Microbiol. 59, 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria through fatty acid analysis, pp. 199–204, In Klement, Z., Rudolph, K., and Sands, D.C. (eds.), Methods in Phytobacteriology, Akademiai Kaido, Budapest, Hungary.

  • Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton, D.R., Furlong, M.A., Peacock, A.D., White, D.C., Coleman, D.C., and Whitman, W.B. 2003. Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int. J. Syst. Evol. Microbiol. 53, 485–490.

    Article  PubMed  Google Scholar 

  • Stackebrandt, E., Rainey, F.A., and Ward-Rainey, N.L. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47, 479–491.

    Article  Google Scholar 

  • Takahashi, Y., Matsumoto, A., Morisaki, K., and Omura, S. 2006. Patulibacter minatonensis gen. nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 56, 401–406.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschech, A. and Pfennig, N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167.

    Article  CAS  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Joa, J.H., Son, J.A., Song, M.H., Kwon, S.W., Go S.J., and Yoon, S.H. 2008. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int. J. Syst. Evol. Microbiol. 58, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Widdel, F. and Bak, F. 1992. Gram-negative mesophilic sulfatereducing bacteria, pp. 3352–3378. In Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.), The Prokaryotes, 2nd edn., Springer, New York, USA.

  • Widdel, F., Kohring, G., and Mayer, F. 1983. Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov. and Desulfonema magnum sp. nov. Arch. Microbiol. 134, 286–294.

    Article  CAS  Google Scholar 

  • Zhi, X.Y., Li, W.J., and Stackebrandt, E. 2009. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int. J. Syst. Evol. Microbiol. 59, 589–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, DS., Siddiqi, M.Z., Kim, KH. et al. Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov.. J Microbiol. 56, 24–29 (2018). https://doi.org/10.1007/s12275-018-7107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-7107-6

Keywords

Navigation