Skip to main content

Mucilaginibacter hankyongensis sp. nov., isolated from soil of ginseng field Baekdu Mountain

Abstract

A Gram-negative, non-motile, aerobic, and rod-shaped bacterial strain designated as BR5-28T was isolated from the soil of a ginseng field at Baekdu Mountain Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BR5-28T grew at 10–42°C (optimum temperature, 30°C) and pH 5.5–8.5 (optimum pH, 7.0) on R2A agar medium without additional NaCl supplementation. Strain BR5- 28T exhibited β-glucosidase activity, which was responsible for its ability to transform the ginsenosides Rb1 and Rd (the two dominant active components of ginseng) to compound-K. Based on 16S rRNA gene phylogeny, the novel strain showed a new branch within the genus Mucilaginibacter of the family Sphingobacteriaceae, and formed clusters with Mucilaginibacter frigoritolerans FT22T (95.8%) and Mucilaginibacter gotjawali SA3-7T (95.7%). The G+C content of the genomic DNA was 45.1%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c), iso-C15:0 and anteiso-C15:0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Strain BR5-28T was differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter hankyongensis sp. nov. is proposed, with the type strain BR5-28T (=KCTC 22274T =DSM 21151T).

This is a preview of subscription content, access via your institution.

References

  • Atlas, R.M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Baik, K.S., Park, S.C., Kim, E.M., Lim, C.H., and Seong, C.N. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60, 134–139.

    CAS  Article  PubMed  Google Scholar 

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.

    Google Scholar 

  • Chen, W.M., Che, N.Y.L., and Sheu, S.Y. 2016. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 66, 1112–1118.

    CAS  Article  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    CAS  Article  Google Scholar 

  • Jia, L. and Zhao, Y. 2009. Current evaluation of the millennium phytomedicine- ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 16, 2475–2484.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Joung, Y., Kang, H., Lee, B.I., Kim, H., Joh, K., and Kim, K.J. 2015. Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int. J. Syst. Evol. Microbiol. 65, 698–703.

    CAS  Article  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    CAS  Article  PubMed  Google Scholar 

  • Kim, J.K., Kang, M.S., Park, S.C., Kim, K.M., Choi, K., Yoon, M.H., and Im, W.T. 2015. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J. Microbiol. 53, 435–441.

    CAS  Article  PubMed  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, Cambridge, New York, USA.

    Google Scholar 

  • Lee, K.C., Kim, K.K., Eom, M.K., Kim, J.S., Kim, D.S., KO, S.H., and Lee, J.S. 2015. Mucilaginibacter gotjawali sp. nov., isolated from soil of a lava forest. Int. J. Syst. Evol. Microbiol. 65, 952–958.

    CAS  Article  PubMed  Google Scholar 

  • Liu, W.K., Xu, S.X., and Che, C.T. 2000. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67, 1297–1306.

    CAS  Article  PubMed  Google Scholar 

  • Männistö, M.K., Tiirola, M., McConnell, J., and Häggblom, M.M. 2010. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int. J. Syst. Evol. Microbiol. 60, 2849–2856.

    Article  PubMed  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    CAS  Article  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    CAS  Article  Google Scholar 

  • Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11.In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology. Wiley, New York, USA.

    Google Scholar 

  • Pankratov, T.A., Tindall, B.J., Liesack, W., and Dedysh, S.N. 2007. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic sphagnum peat bog. Int. J. Syst. Evol. Microbiol. 57, 2349–2354.

    CAS  Article  PubMed  Google Scholar 

  • Perry, L.B. 1973. Gliding motility in some non-spreading flexibacteria. J. Appl. Bacteriol. 36, 227–232.

    CAS  Article  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Siddiqi, M.Z. and Im, W.T. 2016. Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. Int. J. Syst. Evol. Microbiol. 66, 3449–3455.

    Article  PubMed  Google Scholar 

  • Siddiqi, M.Z., Cui, C.H., Park, S.K., Han, N.S., Kim, S.C., and Im, W.T. 2017a. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix. PLoS One 12, e0176098.

    Article  Google Scholar 

  • Siddiqi, M.Z., Im, W.T., and Aslam, Z. 2017b. Arachidicoccus ginsenosidivorans sp. nov., with ginsenoside converting activity isolated from ginseng cultivating soil. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001720

    Google Scholar 

  • Siddiqi, M.Z., Liu, Q., Kang, M.S., Kim, M.S., and Im, W.T. 2016a. Anseongella ginsenosidimutans gen. nov., sp. nov., isolated from soil cultivating ginseng. Int. J. Syst. Evol. Microbiol. 66, 1125–1130.

    CAS  Article  Google Scholar 

  • Siddiqi, M.Z., Muhammad Shafi, S., Choi, K.D., and Im, W.T. 2016b. Panacibacter ginsenosidivorans gen. nov., sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 66, 4039–4045.

    Article  PubMed  Google Scholar 

  • Siddiqi, M.Z., Muhammad Shafi, S., Choi, K.D., Im, W.T., and Aslam, Z. 2016c. Sphingobacterium jejuense sp. nov., with ginsenosideconverting activity, isolated from compost. Int. J. Syst. Evol. Microbiol. 66, 4433–4439.

    Article  PubMed  Google Scholar 

  • Siddiqi, M.H., Siddiqi, M.Z., Ahn, S., Kang, S., Kim, Y.J., Veerappan, K., and Yang, D.C. 2014. Stimulative effect of ginsenosides Rg5:Rk1 on murine osteoblastic MC3T3-E1 cells. Phytother. Res. 28, 1447–1455.

    CAS  Article  PubMed  Google Scholar 

  • Siddiqi, M.Z., Siddiqi, M.H., Kim, Y.J., Jin, Y., Huq, M.A., and Yang, D.C. 2015. Effect of fermented red ginseng extract enriched in ginsenoside Rg3 on the differentiation and mineralization of preosteoblastic MC3T3-E1 cells. J. Med. Food. 18, 542–548.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tang, J., Huang, J., Qiao, Z., Wang, R., and Wang, G. 2016. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038.

    Article  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tawab, M.A., Bahr, U., Karas, M., Wurglics, M., and Schubert-Zsilavecz, M. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31, 1065–1071.

    Article  PubMed  Google Scholar 

  • Ten, L.N., Im, W.T., Kim, M.K., Kang, M.S., and Lee, S.T. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375–382.

    CAS  Article  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Urai, M., Aizawa, T., Nakagawa, Y., Nakajima, M., and Sunairi, M. 2008. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int. J. Syst. Evol. Microbiol. 58, 2046–2050.

    CAS  Article  PubMed  Google Scholar 

  • Wang, W., Rayburn, E.R., Hao, M., Zhao, Y., Hill, D.L., Zhang, R., and Wang, H. 2008. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate 68, 809–819.

    CAS  Article  PubMed  Google Scholar 

  • Xu, Q.F., Fang, X.L., and Chen, D.F. 2003. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 84, 187–192.

    CAS  Article  PubMed  Google Scholar 

  • Zhao, X., Wang, J., Li, J., Fu, L., Gao, J., Du, X., Bi, H., Zhou, Y., and Tai, G. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. itFulvia fulva). J. Ind. Microbiol. Biotechnol. 36, 721–726.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Siddiqi, M.Z., Kim, MS. et al. Mucilaginibacter hankyongensis sp. nov., isolated from soil of ginseng field Baekdu Mountain. J Microbiol. 55, 525–530 (2017). https://doi.org/10.1007/s12275-017-7180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7180-2

Keywords

  • 16S rRNA gene
  • polyphasic taxonomy
  • Mucilaginibacter hankyongensis
  • ginsenoside