Spirosoma metallicus sp. nov., isolated from an automobile air conditioning system

Abstract

A Gram-stain-negative and orangish yellow-pigmented bacterial strain, designated PR1014KT, was isolated from an automobile evaporator core collected in Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PR1014KT was related with the members of the genus Spirosoma (94.7–90.2%) and closely related with Spirosoma lacussanchae CPCC 100624T (94.7%), Spirosoma knui 15J8-12T (94.3%), and Spirosoma soli MIMBbqt12T (93.3%). The strain grew at 15–40°C (optimum, 25°C), pH 6.5–7.0 (optimum, 6.5) and 0–1% (w/v) NaCl (optimum, 0%). The predominant fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, iso-C15:0, C16:1 ω5c, and iso-C17:0 3-OH. The major menaquinone was MK-7. The polar lipid profile of the strain indicated that the presence of one phosphatidylethanolamine, one unidentified aminolipid, two unidentified aminophospholipids, and three unidentified lipids. The DNA G+C content of the strain was 47.4 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain PR1014KT represents a novel species in the genus Spirosoma, for which the name Spirosoma metallicus sp. nov. (=KACC 17940T =NBRC 110792T) is proposed.

This is a preview of subscription content, access via your institution.

References

  1. Ahn, J.H., Weon, H.Y., Kim, S.J., Hong, S.B., Seok, S.J., and Kwon, S.W. 2014. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int. J. Syst. Evol. Microbiol. 64, 3230–3234.

    CAS  Article  PubMed  Google Scholar 

  2. Baik, K.S., Kim, M.S., Park, S.C., Lee, D.W., Lee, S.D., Ka, J.O., Choi, S.K., and Seong, C.N. 2007. Spirosoma rigui sp. nov., isolated from fresh water. Int. J. Syst. Evol. Microbiol. 57, 2870–2873.

    CAS  Article  PubMed  Google Scholar 

  3. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.

    CAS  PubMed  Google Scholar 

  4. Breznak, J.A. and Costilow, R.N. 2007. Physicochemical factors in growth. pp. 309–329. In Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., and Snyder, L.R. (eds.). Methods for general and molecular bacteriology, American Society for Microbiology, Washington, USA.

    Google Scholar 

  5. Chang, X., Jiang, F., Wang, T., Kan, W., Qu, Z., Ren, L., Fang, C., and Peng, F. 2014. Spirosoma arcticum sp. nov., isolated from high Arctic glacial till. Int. J. Syst. Evol. Microbiol. 64, 2233–2237.

    CAS  Article  PubMed  Google Scholar 

  6. Denner, E., Paukner, S., Kämpfer, P., Moore, E., Abraham, W.R., Busse, H.J., Wanner, G., and Lubitz, W. 2001. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int. J. Syst. Evol. Microbiol. 51, 827–841.

    CAS  Article  PubMed  Google Scholar 

  7. Embley, T.M. and Wait, R. 1994. Structural lipids of eubacteria, pp. 121–161. In Goodfellow, M. and O’Donnell, A.G. (eds.), Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics, John Wiley & Sons, Chichester, England.

    Google Scholar 

  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    CAS  Article  PubMed  Google Scholar 

  9. Felsenstein, J. 1985. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  10. Finster, K.W., Herbert, R.A., and Lomstein, B.A. 2009. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int. J. Syst. Evol. Microbiol. 59, 839–844.

    CAS  Article  PubMed  Google Scholar 

  11. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  12. Fries, J., Pfeiffer, S., Kuffner, M., and Sessitsch, A. 2013. Spirosoma endophyticum sp. nov., isolated from Zn-and Cd-accumulating Salix caprea. Int. J. Syst. Evol. Microbiol. 63, 4586–4590.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez, J. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    CAS  Article  PubMed  Google Scholar 

  14. Kim, D.U. and Ka, J.O. 2014. Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int. J. Syst. Evol. Microbiol. 64, 1024–1029.

    CAS  Article  PubMed  Google Scholar 

  15. Komagata, K. and Suzuki, K.I. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.

    CAS  Article  Google Scholar 

  16. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    CAS  Article  PubMed  Google Scholar 

  17. Larkin, J.M. and Borral, R. 1984. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL, pp. 125–126. In Krieg, N.R. and Holt, J.G. (eds.). Bergey’s Manual of Systematic Bacteriology, The Williams&Wilkins, Baltimore, USA.

    Google Scholar 

  18. Minnikin, D., O'Donnell, A., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    CAS  Article  Google Scholar 

  19. Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  21. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  22. Smibert, R. and Krieg, N. 1994. Phenotypic characterization. pp. 607–654, In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, USA.

    Google Scholar 

  23. Ten, L.N., Xu, J.L., Jin, F.X., Im, W.T., Oh, H.M., and Lee, S.T. 2009. Spirosoma panaciterrae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59, 331–335.

    CAS  Article  PubMed  Google Scholar 

  24. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–161.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Ok Ka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, DU., Lee, S. et al. Spirosoma metallicus sp. nov., isolated from an automobile air conditioning system. J Microbiol. 55, 673–677 (2017). https://doi.org/10.1007/s12275-017-7162-4

Download citation

Keywords

  • Spirosoma
  • automobile air conditioning system
  • polyphasic taxonomy