Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats

Abstract

In China’s swine industry, copper is generally supplemented above the National Research Council (NRC) requirement (2012) because of its antimicrobial properties and the potential for growth promotion. Yet few are concerned about whether this excess supplementation is necessary. In this study, the 16S rRNA pyrosequencing was designed and used to investigate the effect of dietary copper level on the diversity of the fecal microbial community and the correlation of copper level with the serum level of inflammatory cytokines in Sprague-Dawley rat models. The results showed that the diet containing a high level of Cu (120 and 240 mg/kg) changed the microbial richness and diversity of rat feces associated with the increased copper content in the rat ileac and colonic digesta. Furthermore, a Pearson’s correlation analysis indicated that an accumulation of unabsorbed copper in the chyme was correlated with the microbial composition of the rat feces, which was linked with TNF-α in serum. The results suggest that dietary copper level may have a direct impact on circulating inflammatory cytokines in the serum, perhaps inducing an inflammatory response by altering the microbial composition of rat feces. Serum TNF-α could be the chief responder to excessive copper exposure.

This is a preview of subscription content, access via your institution.

References

  1. Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Gaskins, H.R., Stumpf, R.M., Yildirim, S., Torralba, M., et al. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ansteinsson, V., Refsnes, M., Skomedal, T., Osnes, J.B., Schiander, I., and Lag, M. 2009. Zinc- and Copper-induced interleukin-6 release in primary cell cultures from rat heart. Cardiovasc. Toxicol. 9, 86–94.

    CAS  Article  PubMed  Google Scholar 

  3. Armstrong, T.A., Cook, D.R., Ward, M.M., Williams, C.M., and Spears, J.W. 2004. Effect of dietary copper source (cupric citrate and,cupric sulfate) and concentration on growth performance and fecal copper excretion in weanling pigs. J. Anim. Sci. 82, 1234–1240.

    CAS  Article  PubMed  Google Scholar 

  4. Bailey, J.D., Ansotegui, R.P., Paterson, J.A., Swenson, C.K., and Johnson, A.B. 2001. Effects of supplementing combinations of inorganic and complexed copper on performance and liver mineral status of beef heifers consuming antagonists. J. Anim. Sci. 79, 2926–2934.

    CAS  Article  PubMed  Google Scholar 

  5. Bailey, M.T., Dowd, S.E., Galley, J.D., Hufnagle, A.R., Allen, R.G., and Lyte, M. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407.

    CAS  Article  PubMed  Google Scholar 

  6. Boente, R.F., Ferreira, L.Q., Falcao, L.S., Miranda, K.R., Guimaraes, P.L.S., Santos, J., Vieira, J.M.B.D., Barroso, D.E., Emond, J.P., Ferreira, E.O., et al. 2010. Detection of resistance genes and susceptibility patterns in Bacteroides and Parabacteroides strains. Anaerobe 16, 190–194.

    CAS  Article  PubMed  Google Scholar 

  7. Dewar, M.L., Arnould, J.P., Dann, P., Trathan, P., Groscolas, R., and Smith, S. 2013. Interspecific variations in the gastrointestinal microbiota in penguins. Microbiologyopen 2, 195–204.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Dias, R.S., Lopez, S., Montanholi, Y.R., Smith, B., Haas, L.S., Miller, S.P., and France, J. 2013. A meta-analysis of the effects of dietary copper, molybdenum, and sulfur on plasma and liver copper, weight gain, and feed conversion in growing-finishing cattle. J. Anim. Sci. 91, 5714–5723.

    CAS  Article  PubMed  Google Scholar 

  9. Dziarski, R., Park, S.Y., Kashyap, D.R., Dowd, S.E., and Gupta, D. 2016. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS One 11, 1–24.

    Article  Google Scholar 

  10. Felske, A., Wolterink, A., van Lis, R., De Vos, W.M., and Akkermans, A.D.L. 1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30, 137–145.

    CAS  Article  PubMed  Google Scholar 

  11. Frank, D.N., Amand, A.L.S., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fry, R.S., Ashwell, M.S., Lloyd, K.E., O’Nan, A.T., Flowers, W.L., Stewart, K.R., and Spears, J.W. 2012. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and mRNA expression of hepatic copper regulatory proteins in weanling pigs. J. Anim. Sci. 90, 3112–3119.

    CAS  Article  PubMed  Google Scholar 

  13. Gong, J.H., Forster, R.J., Yu, H., Chambers, J.R., Sabour, P.M., Wheatcroft, R., and Chen, S. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208, 1–7.

    CAS  Article  PubMed  Google Scholar 

  14. Gowanlock, D.W., Mahan, D.C., Jolliff, J.S., Moeller, S.J., and Hill, G.M. 2013. Evaluating the NRC levels of Cu, Fe, Mn, and Zn using organic minerals for grower-finisher swine. J. Anim. Sci. 91, 5680–5686.

    CAS  Article  PubMed  Google Scholar 

  15. Hojberg, O., Canibe, N., Poulsen, H.D., Hedemann, M.S., and Jensen, B.B. 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 71, 2267–2277.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Huang, Y.L., Ashwell, M.S., Fry, R.S., Lloyd, K.E., Flowers, W.L., and Spears, J.W. 2015. Effect of dietary copper amount and source on copper metabolism and oxidative stress of weanling pigs in short-term feeding. J. Anim. Sci. 93, 2948–2955.

    CAS  Article  PubMed  Google Scholar 

  17. Jondreville, C., Revy, P.S., and Dourmad, J.Y. 2003. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest. Prod. Sci. 84, 147–156.

    Article  Google Scholar 

  18. Jost, T., Lacroix, C., Braegger, C.P., Rochat, F., and Chassard, C. 2014. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16, 2891–2904.

    CAS  Article  PubMed  Google Scholar 

  19. Konstantinov, S.R. 2005. Ph.D. thesis. Lactobacilli in the porcine intestine: from composition to functionality. Wageningen University, Wageningen, Netherlands.

    Google Scholar 

  20. Kumar, V., Kalita, J., Bora, H.K., and Misra, U.K. 2016. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol. Appl. Pharmacol. 293, 37–43.

    CAS  Article  PubMed  Google Scholar 

  21. Lin, Z.M., Ning, H.F., Bi, J.G., Qiao, J.F., Liu, Z.H., Li, G.H., Wang, Q.S., Wang, S.H., and Ding, Y.F. 2014. Effects of nitrogen fertilization and genotype on rice grain macronutrients and micronutrients. Rice Science 21, 233–242.

    Article  Google Scholar 

  22. Liu, J.H., Zhang, M.L., Zhang, R.Y., Zhu, W.Y., and Mao, S.Y. 2016. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb. Biotechnol. 9, 257–268.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Lu, L., Wang, R.L., Zhang, Z.J., Steward, F.A., Luo, X.G., and Liu, B. 2010. Effect of dietary supplementation with copper sulfate or tribasic copper chloride on the growth performance, liver copper concentrations of broilers fed in floor pens, and stabilities of vitamin E and phytase in feeds. Biol. Trace. Elem. Res. 138, 181–189.

    CAS  Article  PubMed  Google Scholar 

  24. Luo, X.G., Ji, F., Lin, Y.X., Steward, F.A., Lu, L., Liu, B., and Yu, S.X. 2005. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult. Sci. 84, 888–893.

    CAS  Article  PubMed  Google Scholar 

  25. Ma, Y.L., Zanton, G.I., Zhao, J., Wedekind, K., Escobar, J., and Vazquez-Anon, M. 2015. Multitrial analysis of the effects of copper level and source on performance in nursery pigs. J. Anim. Sci. 93, 606–614.

    CAS  Article  PubMed  Google Scholar 

  26. Mattie, M.D., McElwee, M.K., and Freedman, J.H. 2008. Mechanism of copper-activated transcription: activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways. J. Mol. Biol. 383, 1008–1018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Mavromichalis, I., Hancock, J.D., Kim, I.H., Senne, B.W., Kropf, D.H., Kennedy, G.A., Hines, R.H., and Behnke, K.C. 1999. Effects of omitting vitamin and trace mineral premixes and(or) reducing inorganic phosphorus additions on growth performance, carcass characteristics, and muscle quality in finishing pigs. J. Anim. Sci. 77, 2700–2708.

    CAS  Article  PubMed  Google Scholar 

  28. Mei, S.F., Yu, B., Ju, C.F., Zhu, D., and Chen, D.W. 2010. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets. Int. J. Mol. Sci. 9, 378–381.

    Google Scholar 

  29. Mori, H., Maruyama, F., Kato, H., Toyoda, A., Dozono, A., Ohtsubo, Y., Nagata, Y., Fujiyama, A., Tsuda, M., and Kurokawa, K. 2014. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227.

    CAS  Article  PubMed  Google Scholar 

  30. Munoz, C., Lopez, M., Olivares, M., Pizarro, F., Arredondo, M., and Araya, M. 2005. Differential response of interleukin-2 production to chronic copper supplementation in healthy humans. Eur. Cytokine Netw. 16, 261–265.

    CAS  PubMed  Google Scholar 

  31. Namkung, H., Gong, J., Yu, H., and De Lange, C.F.M. 2006. Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Can. J. Anim. Sci. 86, 511–522.

    CAS  Article  Google Scholar 

  32. Novotny, J., Pistl, J., and Kovac, G. 2003. Effects of supplementation of organic-bound trace elements on blood and tissues-Micromineral profile and immune parameters of piglets. Acta Vet.-Beogr. 53, 11–18.

    Article  Google Scholar 

  33. Pang, Y., Patterson, J.A., and Applegate, T.J. 2009. The influence of copper concentration and source on ileal microbiota. Poult. Sci. 88, 586–592.

    CAS  Article  PubMed  Google Scholar 

  34. Pereira, T.C., Campos, M.M., and Bogo, M.R. 2016. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J. Appl. Toxicol. 36, 876–881.

    CAS  Article  PubMed  Google Scholar 

  35. Petta, S., Gastaldelli, A., Rebelos, E., Bugianesi, E., Messa, P., Miele, L., Svegliati-Baroni, G., Valenti, L., and Bonino, F. 2016. Pathophysiology of non alcoholic fatty liver disease. Int. J. Mol. Sci. 17, 1–26.

    Article  Google Scholar 

  36. Rajilic-Stojanovic, M., Shanahan, F., Guarner, F., and De Vos, W.M. 2013. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488.

    Article  PubMed  Google Scholar 

  37. Reeves, P.G., Nielsen, F.H., and Fahey, G.C.Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.

    CAS  PubMed  Google Scholar 

  38. Sanchez, D., Miguel, M., and Aleixandre, A. 2012. Dietary fiber, gut peptides, and adipocytokines. J. Med. Food 15, 223–230.

    CAS  Article  PubMed  Google Scholar 

  39. Satokari, R., Fuentes, S., Mattila, E., Jalanka, J., De Vos, W.M., and Arkkila, P. 2014. Fecal transplantation treatment of antibioticinduced, noninfectious colitis and long-term microbiota followup. Case. Rep. Med. 2014, 1–7.

    Article  Google Scholar 

  40. Shelton, J.L., Southern, L.L., LeMieux, F.M., Bidner, T.D., and Page, T.G. 2004. Effects of microbial phytase, low calcium and phosphorus, and removing the dietary trace mineral premix on carcass traits, pork quality, plasma metabolites, and tissue mineral content in growing-finishing pigs. J. Anim. Sci. 82, 2630–2639.

    CAS  Article  PubMed  Google Scholar 

  41. Singh, K.K., Kumar, M., Kumar, P., Gupta, M.K., Jha, D.K., Kumari, S., Roy, B.K., and Kumar, S. 2012. “Free” copper: a new endogenous chemical mediator of inflammation in birds. Biol. Trace. Elem. Res. 145, 338–348.

    CAS  Article  PubMed  Google Scholar 

  42. Song, J., Li, Y.L., and Hu, C.H. 2013. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl. Clay Sci. 77-78, 52–55.

    CAS  Article  Google Scholar 

  43. Turnlund, J.R., Jacob, R.A., Keen, C.L., Strain, J.J., Kelley, D.S., Domek, J.M., Keyes, W.R., Ensunsa, J.L., Lykkesfeldt, J., and Coulter, J. 2004. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 79, 1037–1044.

    CAS  PubMed  Google Scholar 

  44. Veum, T.L., Carlson, M.S., Wu, C.W., Bollinger, D.W., and Ellersieck, M.R. 2004. Copper proteinate in weanling pig diets for enhancing growth performance and reducing fecal copper excretion compared with copper sulfate. J. Anim. Sci. 82, 1062–1070.

    CAS  Article  PubMed  Google Scholar 

  45. Walter, R.M., Uriuhare, J.Y., Olin, K.L., Oster, M.H., Anawalt, B.D., Critchfield, J.W., and Keen, C.L. 1991. Copper, zinc, manganese, and magnesium status and complications of diabetes-mellitus. Diabetes Care 14, 1050–1056.

    Article  PubMed  Google Scholar 

  46. Wang, M.Q., Du, Y.J., Wang, C., Tao, W.J., He, Y.D., and Li, H. 2012. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol. Trace. Elem. Res. 149, 184–189.

    CAS  Article  PubMed  Google Scholar 

  47. Wu, X.Z., Zhang, T.T., Guo, J.G., Liu, Z., Yang, F.H., and Gao, X.H. 2015. Copper bioavailability, blood parameters, and nutrient balance in mink. J. Anim. Sci. 93, 176–184.

    CAS  Article  PubMed  Google Scholar 

  48. Xia, M.S., Hu, C.H., and Xu, Z.R. 2005. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed. Sci. Technol. 118, 307–317.

    CAS  Article  Google Scholar 

  49. Xue, J., Li, H., Deng, X., Ma, Z., Fu, Q., and Ma, S. 2015. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol. Biochem. Behav. 134, 42–48.

    CAS  Article  PubMed  Google Scholar 

  50. Yang, T.H., Yuan, T.H., Hwang, Y.H., Lian, I.B., Meng, M., and Su, C.C. 2015. Increased inflammation in rheumatoid arthritis patients living where farm soils contain high levels of copper. J. Formos. Med. Assoc. 15, 1–6.

    Google Scholar 

  51. Yu, S.G., Vandenberg, G.J., and Beynen, A.C. 1995. Copper-metabolism in analbuminemic rats fed a high-copper diet. Comp. Biochem. Phys. A 110, 259–266.

    CAS  Article  Google Scholar 

  52. Zhou, W., Kornegay, E.T., van Laar, H., Swinkels, J.W., Wong, E.A., and Lindemann, M.D. 1994. The role of feed consumption and feed efficiency in copper-stimulated growth. J. Anim. Sci. 72, 2385–2394.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen Yao.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zheng, W., Guo, R. et al. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol. 55, 694–702 (2017). https://doi.org/10.1007/s12275-017-6627-9

Download citation

Keywords

  • copper
  • inflammatory cytokines
  • gut microbiota
  • 16S rRNA pyrosequencing