Skip to main content
Log in

HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Silent information regulator 2 (Sir2), which is the founding member of the sirtuin family of proteins, is a pro-longevity factor for replicative lifespan (RLS) in Saccharomyces cerevisiae. Sir2 is required for transcriptional silencing at mating type loci, telomeres, and rDNA loci. Sir2 also represses transcription of highly expressed growth-related genes, such as PMA1 and some ribosomal protein genes. Although the Sir2 paralogues Hst1, Hst2, Hst3, and Hst4 occur in S. cerevisiae, none of them could replace the transcriptional regulation of PMA1 by Sir2 in the wild type. In this study, we demonstrate that Hst1, the closest Sir2 paralogue, deacetylates the acetylated lysine 16 of histone H4 (H4K16Ac) and represses PMA1 transcription in the sir2Δ pde2Δ mutant. We further show that Hst1 plays a role in extending the RLS of the sir2Δ pde2Δ mutant. Collectively, our results suggest that Hst1 can substitute for Sir2 by deacetylating H4K16Ac only in the sir2Δ pde2Δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilaniu, H., Gustafsson, L., Rigoulet, M., and Nystrom, T. 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753.

    Article  CAS  PubMed  Google Scholar 

  • Azad, G.K. and Tomar, R.S. 2016. The multifunctional transcription factor Rap1: a regulator of yeast physiology. Front Biosci. (Landmark Ed) 21, 918–930.

    Article  Google Scholar 

  • Bedalov, A., Hirao, M., Posakony, J., Nelson, M., and Simon, J.A. 2003. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 7044–7054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brachmann, C.B., Sherman, J.M., Devine, S.E., Cameron, E.E., Pillus, L., and Boeke, J.D. 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902.

    Article  CAS  PubMed  Google Scholar 

  • Celic, I., Masumoto, H., Griffith, W.P., Meluh, P., Cotter, R.J., Boeke, J.D., and Verreault, A. 2006. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr. Biol. 16, 1280–1289.

    Article  CAS  PubMed  Google Scholar 

  • Che, J., Smith, S., Kim, Y.J., Shim, E.Y., Myung, K., and Lee, S.E. 2015. Hyper-acetylation of histone H3K56 limits break-induced replication by inhibiting extensive repair synthesis. PLoS Genet. 11, e1004990.

    Article  Google Scholar 

  • Dang, W., Steffen, K.K., Perry, R., Dorsey, J.A., Johnson, F.B., Shilatifard, A., Kaeberlein, M., Kennedy, B.K., and Berger, S.L. 2009. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbyshire, M.K., Weinstock, K.G., and Strathern, J.N. 1996. HST1, a new member of the SIR2 family of genes. Yeast 12, 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Erjavec, N. and Nystrom, T. 2007. Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 10877–10881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V.D. 2005. Sir2 blocks extreme life-span extension. Cell 123, 655–667.

    Article  CAS  PubMed  Google Scholar 

  • Froyd, C.A. and Rusche, L.N. 2011. The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Mol. Cell Biol. 31, 3351–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye, R.A. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Ghidelli, S., Donze, D., Dhillon, N., and Kamakaka, R.T. 2001. Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities. EMBO J. 20, 4522–4535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. 1990. Position effect at S.cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.

    Article  CAS  PubMed  Google Scholar 

  • Hecht, A., Strahl-Bolsinger, S., and Grunstein, M. 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383, 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, K.A., Hughes, A.L., and Gottschling, D.E. 2014. Motherdaughter asymmetry of pH underlies aging and rejuvenation in yeast. Elife 3, e03504.

    Article  Google Scholar 

  • Hickman, M.A. and Rusche, L.N. 2007. Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae. PLoS Genet. 3, e126.

    Article  Google Scholar 

  • Hoppe, G.J., Tanny, J.C., Rudner, A.D., Gerber, S.A., Danaie, S., Gygi, S.P., and Moazed, D. 2002. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22, 4167–4180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivy, J.M., Klar, A.J., and Hicks, J.B. 1986. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon, S., Lim, S., Ha, J., and Kim, J. 2015. Identification of Psk2, Skp1, and Tub4 as trans-acting factors for uORF-containing ROK1 mRNA in Saccharomyces cerevisiae. J. Microbiol. 53, 616–622.

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein, M., McVey, M., and Guarente, L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein, M., Powers, R.W., Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. 2005. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196.

    Article  CAS  PubMed  Google Scholar 

  • Kang, W.K., Kim, Y.H., Kang, H.A., Kwon, K.S., and Kim, J.Y. 2015. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. Elife 4, e09709.

    Article  Google Scholar 

  • Kang, W.K., Kim, Y.H., Kim, B.S., and Kim, J.Y. 2014. Growth phasedependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. J. Microbiol. 52, 652–658.

    Article  CAS  PubMed  Google Scholar 

  • Klein, C. and Struhl, K. 1994. Protein kinase A mediates growthregulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol. Cell. Biol. 14, 1920–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamming, D.W., Latorre-Esteves, M., Medvedik, O., Wong, S.N., Tsang, F.A., Wang, C., Lin, S.J., and Sinclair, D.A. 2005. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861–1864.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Valsakumar, V., Poorey, K., Bekiranov, S., and Smith, J.S. 2013. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol. 14, R48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, I.C., Chiu, S.W., Lee, H.Y., and Leu, J.Y. 2012. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol. Biol. Cell 23, 1231–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas, N.L., Miller, K.M., DeFazio, L.G., and Toczyski, D.P. 2006. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109–119.

    Article  CAS  PubMed  Google Scholar 

  • McCord, R., Pierce, M., Xie, J., Wonkatal, S., Mickel, C., and Vershon, A.K. 2003. Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Mol. Cell. Biol. 23, 2009–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFaline-Figueroa, J.R., Vevea, J., Swayne, T.C., Zhou, C., Liu, C., Leung, G., Boldogh, I.R., and Pon, L.A. 2011. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10, 885–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moazed, D., Kistler, A., Axelrod, A., Rine, J., and Johnson, A.D. 1997. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. USA 94, 2186–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti, P., Freeman, K., Coodly, L., and Shore, D. 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8, 2257–2269.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J.D., Denisenko, O., Sova, P., and Bomsztyk, K. 2006. Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2.

    Article  Google Scholar 

  • Perrod, S., Cockell, M.M., Laroche, T., Renauld, H., Ducrest, A.L., Bonnard, C., and Gasser, S.M. 2001. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J. 20, 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijnappel, W.W., Schaft, D., Roguev, A., Shevchenko, A., Tekotte, H., Wilm, M., Rigaut, G., Seraphin, B., Aasland, R., and Stewart, A.F. 2001. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev. 15, 2991–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rine, J. and Herskowitz, I. 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rusche, L.N., Kirchmaier, A.L., and Rine, J. 2003. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481–516.

    Article  CAS  PubMed  Google Scholar 

  • Simoneau, A., Ricard, E., Weber, S., Hammond-Martel, I., Wong, L.H., Sellam, A., Giaever, G., Nislow, C., Raymond, M., and Wurtele, H. 2016. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress. Nucleic Acids Res. 44, 2706–2726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Straight, A.F., Shou, W., Dowd, G.J., Turck, C.W., Deshaies, R.J., Johnson, A.D., and Moazed, D. 1999. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Wierman, M.B. and Smith, J.S. 2014. Yeast sirtuins and the regulation of aging. FEMS Yeast Res. 14, 73–88.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J.M., Le, V.Q., Zimmerman, C., Marmorstein, R., and Pillus, L. 2006. Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep. 7, 1247–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe, K.H. and Shields, D.C. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713.

    Article  CAS  PubMed  Google Scholar 

  • Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., and Vershon, A.K. 1999. Sum1 and Hst1 repress middle sporulationspecific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 18, 6448–6454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Yoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W.K., Devare, M. & Kim, JY. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae . J Microbiol. 55, 123–129 (2017). https://doi.org/10.1007/s12275-017-6535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6535-z

Keywords

Navigation