Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates

Abstract

Daptomycin (DAP) has potent activity in vitro and in vivo against both methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. DAP-resistance (DAP-R) in S. aureus has been mainly observed in MRSA strains, and has been linked to single nucleotide polymorphisms (SNPs) within the mprF gene leading to altered cell membrane (CM) phospholipid (PL) profiles, enhanced positive surface charge, and changes in CM fluidity. The current study was designed to delineate whether these same genotypic and phenotypic perturbations are demonstrated in clinically-derived DAP-R MSSA strains. We used three isogenic DAP-susceptible (DAP-S)/DAP-R strainpairs and compared: (i) presence of mprF SNPs, (ii) temporal expression profiles of the two key determinants (mprF and dltABCD) of net positive surface charge, (iii) increased production of mprF-dependent lysinylated-phosphatidylglycerol (L-PG), (iv) positive surface charge assays, and (v) susceptibility to cationic host defense peptides (HDPs) of neutrophil and platelet origins. Similar to prior data in MRSA, DAP-R (vs DAP-S) MSSA strains exhibited hallmark hot-spot SNPs in mprF, enhanced and dysregulated expression of both mprF and dltA, L-PG overproduction, HDP resistance and enhanced positive surface charge profiles. However, in contrast to most DAP-R MRSA strains, there were no changes in CM fluidity seen. Thus, charge repulsion via mprF-and dlt-mediated enhancement of positive surface charge may be the main mechanism to explain DAP-R in MSSA strains.

This is a preview of subscription content, log in to check access.

References

  1. Bayer, A.S., Mishra, N.N., Chen, L., Kreiswirth, B.N., Rubio, A., and Yang, S.J. 2015. Frequency and distribution of single-nucleotide polymorphisms within mprF in methicillin-resistant Staphylococcus aureus clinical isolates and their role in cross-resistance to daptomycin and host defense antimicrobial peptides. Antimicrob. Agents Chemother. 59, 4930–4937.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bayer, A.S., Mishra, N.N., Cheung, A.L., Rubio, A., and Yang, S.J. 2016. Dysregulation of mprF and dltABCD expression among daptomycin-non-susceptible MRSA clinical isolates. J. Antimicrob. Chemother. 71, 2100–2104.

    Article  PubMed  Google Scholar 

  3. Bayer, A.S., Mishra, N.N., Sakoulas, G., Nonejuie, P., Nast, C.C., Pogliano, J., Chen, K.T., Ellison, S.N., Yeaman, M.R., and Yang, S.J. 2014. Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: role in cross-resistance between daptomycin and host defense antimicrobial peptides. Antimicrob. Agents Chemother. 58, 7462–7467.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bayer, A.S., Prasad, R., Chandra, J., Koul, A., Smriti, M., Varma, A., Skurray, R.A., Firth, N., Brown, M.H., Koo, S.P., et al. 2000. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect. Immun. 68, 3548–3553.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bayer, A.S., Schneider, T., and Sahl, H.G. 2013. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann. N. Y. Acad. Sci. 1277, 139–158.

    CAS  Article  PubMed  Google Scholar 

  6. Bertsche, U., Weidenmaier, C., Kuehner, D., Yang, S.J., Baur, S., Wanner, S., Francois, P., Schrenzel, J., Yeaman, M.R., and Bayer, A.S. 2011. Correlation of daptomycin resistance in a clinical Staphylococcus aureus strain with increased cell wall teichoic acid production and D-alanylation. Antimicrob. Agents Chemother. 55, 3922–3928.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Boucher, H.W. and Sakoulas, G. 2007. Antimicrobial resistance: perspectives on daptomycin resistance, with emphasis on resistance in Staphylococcus aureus. Clin. Infect. Dis. 45, 601–608.

    CAS  Article  PubMed  Google Scholar 

  8. Cheung, A.L., Bayer, A.S., Yeaman, M.R., Xiong, Y.Q., Waring, A.J., Memmi, G., Donegan, N., Chaili, S., and Yang, S.J. 2014. Sitespecific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect. Immun. 82, 5336–5345.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cui, L., Tominaga, E., Neoh, H.M., and Hiramatsu, K. 2006. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 1079–1082.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Dyer, D.W. and Iandolo, J.J. 1983. Rapid isolation of DNA from Staphylococcus aureus. Appl. Environ. Microbiol. 46, 283–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ernst, C.M., Kuhn, S., Slavetinsky, C.J., Krismer, B., Heilbronner, S., Gekeler, C., Kraus, D., Wagner, S., and Peschel, A. 2015. The lipid-modifying multiple peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits. mBio 6, e02340–02314.

    Article  Google Scholar 

  12. Ernst, C., Staubitz, P., Mishra, N.N., Yang, S.J., Hornig, G., Kalbacher, H., Bayer, A.S., Kraus, D., and Peschel, A. 2009. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog. 5, e1000660.

    Article  Google Scholar 

  13. Friedman, L., Alder, J.D., and Silverman, J.A. 2006. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 2137–2145.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Jones, T., Yeaman, M.R., Sakoulas, G., Yang, S.J., Proctor, R.A., Sahl, H.G., Schrenzel, J., Xiong, Y.Q., and Bayer, A.S. 2008. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother. 52, 269–278.

    CAS  Article  PubMed  Google Scholar 

  15. Kaatz, G.W., Lundstrom, T.S., and Seo, S.M. 2006. Mechanisms of daptomycin resistance in Staphylococcus aureus. Int. J. Antimicrob. Agents 28, 280–287.

    CAS  Article  PubMed  Google Scholar 

  16. Marco, F., Garcia de la Maria, C., Armero, Y., Amat, E., Soy, D., Moreno, A., del Rio, A., Almela, M., Mestres, C.A., Gatell, J.M., et al. 2008. Daptomycin is effective in treatment of experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 2538–2543.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Mishra, N.N., Bayer, A.S., Moise, P.A., Yeaman, M.R., and Sakoulas, G. 2012a. Reduced susceptibility to host-defense cationic peptides and daptomycin coemerge in methicillin-resistant Staphylococcus aureus from daptomycin-naive bacteremic patients. J. Infect. Dis. 206, 1160–1167.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Mishra, N.N., Bayer, A.S., Tran, T.T., Shamoo, Y., Mileykovskaya, E., Dowhan, W., Guan, Z., and Arias, C.A. 2012b. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One 7, e43958.

    Article  Google Scholar 

  19. Mishra, N.N., Bayer, A.S., Weidenmaier, C., Grau, T., Wanner, S., Stefani, S., Cafiso, V., Bertuccio, T., Yeaman, M.R., Nast, C.C., et al. 2014. Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS One 9, e107426.

    Article  Google Scholar 

  20. Mishra, N.N., Liu, G.Y., Yeaman, M.R., Nast, C.C., Proctor, R.A., McKinnell, J., and Bayer, A.S. 2011a. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 55, 526–531.

    CAS  Article  PubMed  Google Scholar 

  21. Mishra, N.N., McKinnell, J., Yeaman, M.R., Rubio, A., Nast, C.C., Chen, L., Kreiswirth, B.N., and Bayer, A.S. 2011b. In vitro crossresistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 55, 4012–4018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Mishra, N.N., Yang, S.J., Sawa, A., Rubio, A., Nast, C.C., Yeaman, M.R., and Bayer, A.S. 2009. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus (MRSA). Antimicrob. Agents Chemother. 53, 2312–2318.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Mukhopadhyay, K., Whitmire, W., Xiong, Y.Q., Molden, J., Jones, T., Peschel, A., Staubitz, P., Adler-Moore, J., McNamara, P.J., Proctor, R.A., et al. 2007. In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology 153, 1187–1197.

    CAS  Article  PubMed  Google Scholar 

  24. Murthy, M.H., Olson, M.E., Wickert, R.E., Fey, P.D., and Jalali, Z. 2008. Daptomycin non-susceptible methicillin-resistant Staphylococcus aureus USA 300 isolate. J. Med. Microbiol. 57, 1036–1038.

    Article  PubMed  Google Scholar 

  25. Peschel, A., Jack, R.W., Otto, M., Collins, L.V., Staubitz, P., Nicholson, G., Kalbacher, H., Nieuwenhuizen, W.F., Jung, G., Tarkowski, A., et al. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193, 1067–1076.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Peschel, A., Otto, M., Jack, R.W., Kalbacher, H., Jung, G., and Gotz, F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410.

    CAS  Article  PubMed  Google Scholar 

  27. Pillai, S.K., Gold, H.S., Sakoulas, G., Wennersten, C., Moellering, R.C., and Eliopoulos, G.M. 2007. Daptomycin nonsusceptibility in Staphylococcus aureus with reduced vancomycin susceptibility is independent of alterations in MprF. Antimicrob. Agents Chemother. 51, 2223–2225.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Staubitz, P., Neumann, H., Schneider, T., Wiedemann, I., and Peschel, A. 2004. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol. Lett. 231, 67.

    CAS  Article  PubMed  Google Scholar 

  29. Xiong, Y.Q., Mukhopadhyay, K., Yeaman, M.R., Adler-Moore, J., and Bayer, A.S. 2005. Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob. Agents Chemother. 49, 3114–3121.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Yang, S.J., Bayer, A.S., Mishra, N.N., Meehl, M., Ledala, N., Yeaman, M.R., Xiong, Y.Q., and Cheung, A.L. 2012. The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect. Immun. 80, 74–81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Yang, S.J., Kreiswirth, B.N., Sakoulas, G., Yeaman, M.R., Xiong, Y.Q., Sawa, A., and Bayer, A.S. 2009a. Enhanced expression of dltABCD is associated with development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J. Infect. Dis. 200, 1916–1920.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Yang, S.J., Mishra, N.N., Rubio, A., and Bayer, A.S. 2013a. Causal role of single nucleotide polymorphisms within the mprF gene of Staphylococcus aureus in daptomycin resistance. Antimicrob. Agents Chemother. 57, 5658–5664.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, S.J., Nast, C.C., Mishra, N.N., Yeaman, M.R., Fey, P.D., and Bayer, A.S. 2010. Cell wall thickening is not a universal accompaniment of the daptomycin nonsusceptibility phenotype in Staphylococcus aureus: evidence for multiple resistance mechanisms. Antimicrob. Agents Chemother. 54, 3079–3085.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, S.J., Xiong, Y.Q., Dunman, P.M., Schrenzel, J., Francois, P., Peschel, A., and Bayer, A.S. 2009b. Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2636–2637.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Yang, S.J., Xiong, Y.Q., Yeaman, M.R., Bayles, K.W., Abdelhady, W., and Bayer, A.S. 2013b. Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob. Agents Chemother. 57, 3875–3882.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Yeaman, M.R., Puentes, S.M., Norman, D.C., and Bayer, A.S. 1992. Partial characterization and staphylocidal activity of thrombininduced platelet microbicidal protein. Infect. Immun. 60, 1202–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeaman, M.R., Sullam, P.M., Dazin, P.F., and Bayer, A.S. 1994. Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro. Infect. Immun. 62, 3416–3423.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Mishra, N.N., Park, K.T. et al. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. J Microbiol. 55, 153–159 (2017). https://doi.org/10.1007/s12275-017-6509-1

Download citation

Keywords

  • Staphylococcus aureus
  • daptomycin resistance
  • mprF
  • single nucleotide polymorphism (SNP)
  • host defense antimicrobial peptide