Journal of Microbiology

, Volume 55, Issue 2, pp 81–89 | Cite as

Dengue and Zika viruses: lessons learned from the similarities between these Aedes mosquito-vectored arboviruses

Minireview

Abstract

The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.

Keywords

Dengue virus Zika virus Aedes mosquito arboviruses flavivirus microcephaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, S., Maestre, A.M., Pagni, S., Patel, J.R., Savage, T., Gutman, D., Maringer, K., Bernal-Rubio, D., Shabman, R.S., and Simon, V. 2012. DENV inhibits Type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 8, e1002934.CrossRefGoogle Scholar
  2. Aliota, M.T., Caine, E.A., Walker, E.C., Larkin, K.E., Camacho, E., and Osorio, J.E. 2016. Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl. Trop. Dis. 10, e0004682.Google Scholar
  3. Araujo, L.M., Ferreira, M.L., and Nascimento, O.J. 2016. Guillain-Barré syndrome associated with the Zika virus outbreak in Brazil. Arq. Neuropsiquiatr. 74, 253–255.PubMedCrossRefGoogle Scholar
  4. Aye, K.S., Charngkaew, K., Win, N., Wai, K.Z., Moe, K., Punyadee, N., Thiemmeca, S., Suttitheptumrong, A., Sukpanichnant, S., and Malasit, P. 2014. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Human Pathol. 45, 1221–1233.CrossRefGoogle Scholar
  5. Balasubramanian, S., Anandnathan, K., Shivbalan, S., Datta, M., and Amalraj, E. 2004. Cut-off hematocrit value for hemoconcentration in dengue hemorrhagic fever. J. Trop. Pediatr. 50, 123–124.PubMedCrossRefGoogle Scholar
  6. Balasubramanian, S., Janakiraman, L., Kumar, S.S., Muralinath, S., and Shivbalan, S. 2006. A reappraisal of the criteria to diagnose plasma leakage in dengue hemorrhagic fever. Indian Pediatr. 43, 334–339.PubMedGoogle Scholar
  7. Barrows, N.J., Campos, R.K., Powell, S.T., Prasanth, K.R., Schott-Lerner, G., Soto-Acosta, R., Galarza-Munoz, G., McGrath, E.L., Urrabaz-Garza, R., and Gao, J. 2016. A Screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 20, 259–270.PubMedCrossRefGoogle Scholar
  8. Benelli, G. and Mehlhorn, H. 2016. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol. Res. 115, 1747–1754.PubMedCrossRefGoogle Scholar
  9. Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., and Sankoh, O. 2013. The global distribution and burden of dengue. Nature 496, 504–507.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bollati, M., Alvarez, K., Assenberg, R., Baronti, C., Canard, B., Cook, S., Coutard, B., Decroly, E., de Lamballerie, X., and Gould, E.A. 2010. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res. 87, 125–148.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buathong, R., Hermann, L., Thaisomboonsuk, B., Rutvisuttinunt, W., Klungthong, C., Chinnawirotpisan, P., Manasatienkij, W., Nisalak, A., Fernandez, S., and Yoon, I.K. 2015. Detection of Zika virus infection in Thailand, 2012-2014. Am. J. Trop. Med. Hyg. 93, 380–383.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Buckley, A. and Gould, E.A. 1988. Detection of virus-specific antigen in the nuclei or nucleoli of cells infected with Zika or Langat virus. J. Gen. Virol. 69, 1913–1920.PubMedCrossRefGoogle Scholar
  13. Butler, D. 2016. Brazil asks whether Zika acts alone to cause birth defects. Nature. 535, 475–476.PubMedCrossRefGoogle Scholar
  14. Calvet, G., Aguiar, R.S., Melo, A.S., Sampaio, S.A., de Filippis, I., Fabri, A., Araujo, E.S., de Sequeira, P.C., de Mendonca, M.C., and de Oliveira, L. 2016. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect. Dis. 16, 653–660.PubMedCrossRefGoogle Scholar
  15. Campos, G.S., Bandeira, A.C., and Sardi, S.I. 2015. Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis. 21, 1885–1886.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cao-Lormeau, V.M., Blake, A., Mons, S., Lastere, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., and Larre, P. 2016. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387, 1531–1539.PubMedCrossRefGoogle Scholar
  17. Carod-Artal, F.J. 2016. Epidemiology and neurological complications of infection by the Zika virus: a new emerging neurotropic virus. Rev. Neurol. 62, 317–328.PubMedGoogle Scholar
  18. Chao, D.Y., King, C.C., Wang, W.K., Chen, W.J., Wu, H.L., and Chang, G.J. 2005. Strategically examining the full-genome of dengue virus type 3 in clinical isolates reveals its mutation spectra. Virol. J. 2, 72.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chastel, C. 2012. Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions. Front. Physiol. 3, 70.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen, L.H. and Wilson, M.E. 2010. Dengue and chikungunya infections in travelers. Curr. Opin. Infect. Dis. 23, 438–444.PubMedCrossRefGoogle Scholar
  21. Christian, E.A., Kahle, K.M., Mattia, K., Puffer, B.A., Pfaff, J.M., Miller, A., Paes, C., Davidson, E., and Doranz, B.J. 2013. Atomiclevel functional model of dengue virus Envelope protein infectivity. Proc. Natl. Acad. Sci. USA 110, 18662–18667.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Constenla, D. and Clark, S. 2016. Financing dengue vaccine introduction in the Americas: challenges and opportunities. Expert. Rev. Vaccines 15, 547–559.PubMedCrossRefGoogle Scholar
  23. Dang, J., Tiwari, S.K., Lichinchi, G., Qin, Y., Patil, V.S., Eroshkin, A.M., and Rana, T.M. 2016. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265.PubMedCrossRefGoogle Scholar
  24. de Alwis, R., Beltramello, M., Messer, W.B., Sukupolvi-Petty, S., Wahala, W.M.P.B., Kraus, A., Olivarez, N.P., Pham, Q., Brian, J., and Tsai, W.Y. 2011. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl. Trop. Dis. 5, e1188.CrossRefGoogle Scholar
  25. de Alwis, R., Smith, S.A., Olivarez, N.P., Messer, W.B., Huynh, J.P., Wahala, W.M.P.B., White, L.J., Diamond, M.S., Baric, R.S., and Crowe, J.E. 2012. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. USA 109, 7439–7444.PubMedPubMedCentralCrossRefGoogle Scholar
  26. de Fatima Vasco Aragao, M., van der Linden, V., Brainer-Lima, A.M., Coeli, R.R., Rocha, M.A., Sobral da Silva, P., Durce Costa Gomes de Carvalho, M., van der Linden, A., Cesario de Holanda, A., and Valenca, M.M. 2016. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ 353, i1901.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Sakuntabhai, A., Cao-Lormeau, V.M., Malasit, P., and Rey, F.A. 2016. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 17, 1102–1109.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dietz, V.J., Nieburg, P., Gubler, D.J., and Gomez, I. 1992. Diagnosis of measles by clinical case definition in dengue-endemic areas: implications for measles surveillance and control. Bull World Health Organ. 70, 745–750.PubMedPubMedCentralGoogle Scholar
  29. Dowall, S.D., Graham, V.A., Rayner, E., Atkinson, B., Hall, G., Watson, R.J., Bosworth, A., Bonney, L.C., Kitchen, S., and Hewson, R. 2016. A susceptible mouse model for zika virus infection. PLoS Negl. Trop. Dis. 10, e0004658.CrossRefGoogle Scholar
  30. Duffy, M.R., Chen, T.H., Hancock, W.T., Powers, A.M., Kool, J.L., Lanciotti, R.S., Pretrick, M., Marfel, M., Holzbauer, S., and Dubray, C. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360, 2536–2543.PubMedCrossRefGoogle Scholar
  31. Dupont-Rouzeyrol, M., O’Connor, O., Calvez, E., Daures, M., John, M., Grangeon, J.P., and Gourinat, A.C. 2015. Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerg. Infect. Dis. 21, 381–382.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ellison, D.W., Ladner, J.T., Buathong, R., Alera, M.T., Wiley, M.R., Hermann, L., Rutvisuttinunt, W., Klungthong, C., Chinnawirotpisan, P., and Manasatienkij, W. 2016. Complete genome sequences of zika virus strains isolated from the blood of patients in Thailand in 2014 and the Philippines in 2012. Genome Announc. 4, e00359–16.CrossRefGoogle Scholar
  33. Faye, O., Freire, C.C., Iamarino, A., Faye, O., de Oliveira, J.V., Diallo, M., Zanotto, P.M., and Sall, A.A. 2014. Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl. Trop. Dis. 8, e2636.CrossRefGoogle Scholar
  34. Flingai, S., Plummer, E.M., Patel, A., Shresta, S., Mendoza, J.M., Broderick, K.E., Sardesai, N.Y., Muthumani, K., and Weiner, D.B. 2015. Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Sci. Rep. 5, 12616.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gan, V.C. 2014. Dengue: moving from current standard of care to state-of-the-art treatment. Curr. Treat Options Infect. Dis. 6, 208–226.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gebhard, L.G., Filomatori, C.V., and Gamarnik, A.V. 2011. Functional RNA elements in the dengue virus genome. Viruses 3, 1739–1756.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gomes, L., Fernando, S., Fernando, R.H., Wickramasinghe, N., Shyamali, N.L., Ogg, G.S., and Malavige, G.N. 2014. Sphingosine 1-phosphate in acute dengue infection. PLoS One 9, e113394.CrossRefGoogle Scholar
  38. Guabiraba, R. and Ryffel, B. 2014. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141, 143–156.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guy, B., Briand, O., Lang, J., Saville, M., and Jackson, N. 2015. Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 33, 7100–7111.PubMedCrossRefGoogle Scholar
  40. Hadinegoro, R.S. 2012. The revised WHO dengue case classification: does the system need to be modified? Paediatr. Int. Child Health 32, 33–38.CrossRefGoogle Scholar
  41. Halstead, S.B., Mahalingam, S., Marovich, M.A., Ubol, S., and Mosser, D.M. 2010. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis. 10, 712–722.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hayes, E.B. 2009. Zika virus outside Africa. Emerg. Infect. Dis. 15, 1347–1350.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Howard, C.R. 2016. Aedes mosquitoes and Zika virus infection: an A to Z of emergence? Emerg. Microbes Infect. 5, e16.CrossRefGoogle Scholar
  44. Jouannic, J.M., Friszer, S., Leparc-Goffart, I., Garel, C., and Eyrolle-Guignot, D. 2016. Zika virus infection in French Polynesia. Lancet 387, 1051–1052.PubMedCrossRefGoogle Scholar
  45. Kalayanarooj, S. 2011. Clinical manifestations and management of Dengue/DHF/DSS. Trop. Med. Health 39, 83–87.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kostyuchenko, V.A., Lim, E.X., Zhang, S., Fibriansah, G., Ng, T.S., Ooi, J.S., Shi, J., and Lok, S.M. 2016. Structure of the thermally stable Zika virus. Nature 533, 425–428.PubMedGoogle Scholar
  47. Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., and Strauss, E.G. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lazear, H.M. and Diamond, M.S. 2016. Zika virus: new clinical syndromes and its emergence in the western hemisphere. J. Virol. 90, 4864–4875.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mansuy, J.M., Pasquier, C., Daudin, M., Chapuy-Regaud, S., Moinard, N., Chevreau, C., Izopet, J., Mengelle, C., and Bujan, L. 2016. Zika virus in semen of a patient returning from a non-epidemic area. Lancet Infect. Dis. 16, 894–895.PubMedCrossRefGoogle Scholar
  50. Marchette, N.J., Garcia, R., and Rudnick, A. 1969. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 18, 411–415.PubMedGoogle Scholar
  51. Martines, R.B., Bhatnagar, J., de Oliveira Ramos, A.M., Davi, H.P., Iglezias, S.D., Kanamura, C.T., Keating, M.K., Hale, G., Silva-Flannery, L., and Muehlenbachs, A. 2016. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388, 898–904.PubMedCrossRefGoogle Scholar
  52. Massey, T.H. and Robertson, N.P. 2016. Zika virus and neurology: proving cause and effect. J. Neurol. 263, 1255–1257.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Messina, J.P., Brady, O.J., Scott, T.W., Zou, C., Pigott, D.M., Duda, K.A., Bhatt, S., Katzelnick, L., Howes, R.E., and Battle, K.E. 2014. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22, 138–146.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Millichap, J.G. 2016. Zika virus infection and microcephaly. Pediatr. Neurol. Briefs 30, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mlakar, J., Korva, M., Tul, N., Popovic, M., Poljsak-Prijatelj, M., Mraz, J., Kolenc, M., Resman Rus, K., Vesnaver Vipotnik, T., and Fabjan Vodusek, V. 2016. Zika virus associated with microcephaly. N Engl. J. Med. 374, 951–958.PubMedCrossRefGoogle Scholar
  56. Modhiran, N., Watterson, D., Muller, D.A., Panetta, A.K., Sester, D.P., Liu, L., Hume, D.A., Stacey, K.J., and Young, P.R. 2015. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 7, 304ra142.CrossRefGoogle Scholar
  57. Mondotte, J.A., Lozach, P.Y., Amara, A., and Gamarnik, A.V. 2007. Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J. Virol. 81, 7136–7148.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Murray, N.E., Quam, M.B., and Wilder-Smith, A. 2013. Epidemiology of dengue: past, present and future prospects. Clin. Epidemiol. 5, 299–309.PubMedPubMedCentralGoogle Scholar
  59. Mysorekar, I.U. and Diamond, M.S. 2016. Modeling zika virus infection in pregnancy. N Engl. J. Med. 375, 481–484.PubMedCrossRefGoogle Scholar
  60. Narvaez, F., Gutierrez, G., Perez, M.A., Elizondo, D., Nunez, A., Balmaseda, A., and Harris, E. 2011. Evaluation of the traditional and revised WHO classifications of Dengue disease severity. PLoS Negl. Trop. Dis. 5, e1397.CrossRefGoogle Scholar
  61. Nasirudeen, A.M., Wong, H.H., Thien, P., Xu, S., Lam, K.P., and Liu, D.X. 2011. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl. Trop. Dis. 5, e926.CrossRefGoogle Scholar
  62. Oliveira Melo, A.S., Malinger, G., Ximenes, R., Szejnfeld, P.O., Alves Sampaio, S., and Bispo de Filippis, A.M. 2016. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet. Gynecol. 47, 6–7.Google Scholar
  63. Ooi, E.E., Goh, K.T., and Gubler, D.J. 2006. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 12, 887–893.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Organization, W.H. 2011. Comprehensive guildlines for prevention and control of dengue and dengue haemorrhagic fever India: Regional office for South-East Asia World Health House Indraprastha Estate.Google Scholar
  65. Paixao, E.S., Barreto, F., Teixeira, M.D., Costa, M.D.N., and Rodrigues, L.C. 2016. History, epidemiology, and clinical manifestations of Zika: A systematic review. Am. J. Public Health 106, 606–612.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Panchaud, A., Stojanov, M., Ammerdorffer, A., Vouga, M., and Baud, D. 2016. Emerging role of zika virus in adverse fetal and neonatal outcomes. Clin. Microbiol. Rev. 29, 659–694.PubMedCrossRefGoogle Scholar
  67. Pillet, S. 2009. Infection with Zika virus: recent epidemic in the Islands of Yap (Micronesia). Virologie 13, 183–184.Google Scholar
  68. Povoa, T.F., Alves, A.M., Oliveira, C.A., Nuovo, G.J., Chagas, V.L., and Paes, M.V. 2014. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 9, e83386.CrossRefGoogle Scholar
  69. Puttikhunt, C., Kasinrerk, W., Srisa-ad, S., Duangchinda, T., Silakate, W., Moonsom, S., Sittisombut, N., and Malasit, P. 2003. Production of anti-dengue NS1 monoclonal antibodies by DNA immunization. J. Virol. Methods 109, 55–61.PubMedCrossRefGoogle Scholar
  70. Rajapakse, S., Rodrigo, C., and Rajapakse, A. 2012. Treatment of dengue fever. Infect. Drug Resist. 5, 103–112.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ranjit, S. and Kissoon, N. 2011. Dengue hemorrhagic fever and shock syndromes. Pediatr. Crit. Care Med. 12, 90–100.PubMedCrossRefGoogle Scholar
  72. Rey, F.A. 2003. Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proc. Natl. Acad. Sci. USA 100, 6899–6901.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rolfe, A.J., Bosco, D.B., Wang, J., Nowakowski, R.S., Fan, J., and Ren, Y. 2016. Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell Biosci. 6, 42.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Roze, B., Najioullah, F., Ferge, J.L., Apetse, K., Brouste, Y., Cesaire, R., Fagour, C., Fagour, L., Hochedez, P., and Jeannin, S. 2016. Zika virus detection in urine from patients with Guillain-Barré syndrome on Martinique, January 2016. Euro Surveill. 21, doi: 10.2807/1560-7917.ES.2016.21.9.30154.Google Scholar
  75. Saiz, J.C., Vazquez-Calvo, A., Blazquez, A.B., Merino-Ramos, T., Escribano-Romero, E., and Martin-Acebes, M.A. 2016. Zika Virus: the Latest Newcomer. Front. Microbiol. 7, 496.PubMedPubMedCentralGoogle Scholar
  76. Sanofi’s successful Phase 3 trials may lead to first-ever Dengue vaccine in 2015. Hum. Vaccin. Immunother. 10, 3427–3429.Google Scholar
  77. Sariol, C.A., Martinez, M.I., Rivera, F., Rodriguez, I.V., Pantoja, P., Abel, K., Arana, T., Giavedoni, L., Hodara, V., and White, L.J. 2011. Decreased dengue replication and an increased anti-viral humoral response with the use of combined toll-like receptor 3 and 7/8 agonists in Macaques. PLoS One 6, e19323.CrossRefGoogle Scholar
  78. Savidis, G., McDougall, W.M., Meraner, P., Perreira, J.M., Portmann, J.M., Trincucci, G., John, S.P., Aker, A.M., Renzette, N., and Robbins, D.R. 2016. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep. 16, 232–246.PubMedCrossRefGoogle Scholar
  79. Schmidt, C.W. 2016. Zika in the United States: How are we preparing? Environ. Health Perspect. 124, A157–165.Google Scholar
  80. Schwartz, D.A. 2016. Autopsy and postmortem studies are concordant: pathology of zika virus infection is neurotropic in fetuses and infants with microcephaly following transplacental transmission. Arch. Pathol. Lab. Med. doi: http://dx.doi.org/10.5858/rpa.2016-0343-OA.Google Scholar
  81. Scott, L.J. 2016. Tetravalent dengue vaccine: a review in the prevention of dengue disease. Drugs 76, 1301–1312.PubMedCrossRefGoogle Scholar
  82. Sikka, V., Chattu, V.K., Popli, R.K., Galwankar, S.C., Kelkar, D., Sawicki, S.G., Stawicki, S.P., and Papadimos, T.J. 2016. The emergence of zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG). J. Global Infect. Dis. 8, 3–15.CrossRefGoogle Scholar
  83. Sim, S. and Hibberd, M.L. 2016. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol. 17, 38.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Singhi, S., Kissoon, N., and Bansall, A. 2007. Dengue and dengue hemorrhagic fever: management issues in an intensive care unit. J. Pediatr. 83, S22–S35.CrossRefGoogle Scholar
  85. Sirohi, D., Chen, Z., Sun, L., Klose, T., Pierson, T.C., Rossmann, M.G., and Kuhn, R.J. 2016. The 3.8 A resolution cryo-EM structure of Zika virus. Science 352, 467–470.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Slavov, S.N., Otaguiri, K.K., Kashima, S., and Covas, D.T. 2016. Overview of Zika virus (ZIKV) infection in regards to the Brazilian epidemic. Braz. J. Med. Biol. Res. 49, e5420.CrossRefGoogle Scholar
  87. Smith, S.A., Zhou, Y., Olivarez, N.P., Broadwater, A.H., de Silva, A.M., and Crowe, J.E. 2012. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J. Virol. 86, 2665–2675.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Smrati Bajpai, M.Y.N. 2016. Zika virus infection, the recent menace of the aedes mosquito. J. Assoc. Physicians India 64, 42–45.PubMedGoogle Scholar
  89. Srichaikul, T. and Nimmannitya, S. 2000. Haematology in dengue and dengue haemorrhagic fever. Baillieres Best Pract. Res. Clin. Haematol. 13, 261–276.PubMedCrossRefGoogle Scholar
  90. Srikiatkhachorn, A. 2009. Plasma leakage in dengue haemorrhagic fever. Thromb. Haemost. 102, 1042–1049.PubMedGoogle Scholar
  91. Srikiatkhachorn, A., Krautrachue, A., Ratanaprakarn, W., Wongtapradit, L., Nithipanya, N., Kalayanarooj, S., Nisalak, A., Thomas, S.J., Gibbons, R.V., and Mammen, M.P.Jr. 2007. Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonographic study. Pediatr. Infect. Dis. J. 26, 283–290; discussion 291-282.PubMedCrossRefGoogle Scholar
  92. Tantawichien, T. 2015. Dengue fever and dengue hemorrhagic fever in adults. Southeast Asian J. Trop. Med. Public Health 46, 79–98.PubMedGoogle Scholar
  93. Teixeira, M.G., Costa Mda, C., de Oliveira, W.K., Nunes, M.L., and Rodrigues, L.C. 2016. The epidemic of zika virus-related microcephaly in Brazil: detection, control, etiology, and future scenarios. Am. J. Public Health 106, 601–605.PubMedCrossRefGoogle Scholar
  94. Teoh, E.P., Kukkaro, P., Teo, E.W., Lim, A.P.C., Tan, T.T., Yip, A., Schul, W., Aung, M., Kostyuchenko, V.A., and Leo, Y.S. 2012. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci. Transl. Med. 4, 139ra83.CrossRefGoogle Scholar
  95. Thisyakorn, U. and Thisyakorn, C. 2014. Latest developments and future directions in dengue vaccines. Ther. Adv. Vaccines 2, 3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Toan, N.T., Rossi, S., Prisco, G., Nante, N., and Viviani, S. 2015. Dengue epidemiology in selected endemic countries: factors influencing expansion factors as estimates of underreporting. Trop. Med. Int. Health 20, 840–863.PubMedCrossRefGoogle Scholar
  97. van der Linden, V., Filho, E.L., Lins, O.G., van der Linden, A., Aragao Mde, F., Brainer-Lima, A.M., Cruz, D.D., Rocha, M.A., Sobral da Silva, P.F., and Carvalho, M.D. 2016. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ 354, i3899.PubMedPubMedCentralCrossRefGoogle Scholar
  98. van Hemert, F. and Berkhout, B. 2016. Nucleotide composition of the Zika virus RNA genome and its codon usage. Virol. J. 13, 95.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Waddell, L.A. and Greig, J.D. 2016. Scoping review of the zika virus literature. PLoS One 11, e0156376.Google Scholar
  100. Whitehorn, J. and Simmons, C.P. 2011. The pathogenesis of dengue. Vaccine 29, 7221–7228.PubMedCrossRefGoogle Scholar
  101. Wikan, N., Suputtamongkol, Y., Yoksan, S., Smith, D.R., and Auewarakul, P. 2016. Immunological evidence of Zika virus transmission in Thailand. Asian Pac. J. Trop. Med. 9, 141–144.PubMedCrossRefGoogle Scholar
  102. Yacoub, S., Wertheim, H., Simmons, C.P., Screaton, G., and Wills, B. 2014. Cardiovascular manifestations of the emerging dengue pandemic. Nat. Rev. Cardiol. 11, 335–345.PubMedCrossRefGoogle Scholar
  103. Yockey, L.J., Varela, L., Rakib, T., Khoury-Hanold, W., Fink, S.L., Stutz, B., Szigeti-Buck, K., Van den Pol, A., Lindenbach, B.D., and Horvath, T.L. 2016. Vaginal exposure to zika virus during pregnancy leads to fetal brain infection. Cell 166, 1247–1256.PubMedCrossRefGoogle Scholar
  104. Zanluca, C., Mazzarotto, G.A., Bordignon, J., and Duarte Dos Santos, C.N. 2014. Development, characterization and application of monoclonal antibodies against Brazilian Dengue virus isolates. PLoS One 9, e110620.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol UniversityBangkokThailand

Personalised recommendations