Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest

Abstract

Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0–10, 10–20, 20–40, and 40–60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40–60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40–60 cm (62.88%). In particular, the 40–60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

This is a preview of subscription content, access via your institution.

References

  1. Bååth, E. and Söderström, B. 2011. Degradation of macromolecules by microfungi isolated from different podzolic soil horizons. Can. J. Bot. 58, 422–425.

    Article  Google Scholar 

  2. Baldrian, P., Kolarík, M., Stursová, M., Kopecký, J., Valášková, V., Vetrovský, T., Zifcáková, L., Snajdr, J., Rídl, J., Vlcek, C., et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258.

    CAS  Article  PubMed  Google Scholar 

  3. Blume, E., Bischoff, M., Reichert, J.M., Moorman, T., Konopka, A., and Turco, R.F. 2002. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171–181.

    Article  Google Scholar 

  4. Boer, W.D., Folman, L.B., Summerbell, R.C., and Boddy, L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811.

    Article  PubMed  Google Scholar 

  5. Bremner, J.M. 1996. Nitrogen-Total. In Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. (eds.) Methods of Soil Analysis, pp. 1085–1121. Part 3-Chemical Methods, Soil Science Society of America Inc., Madison, USA.

    Google Scholar 

  6. Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R.H., Uroz, S., and Martin, F. 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184, 449–456.

    Article  PubMed  Google Scholar 

  7. Cheng, F., Wei, X., Hou, L., Shang, Z., Peng, X., Zhao, P., Fei, Z., and Zhang, S. 2015. Soil fungal communities of montane natural secondary forest types in China. J. Microbiol. 53, 379–389.

    CAS  Article  PubMed  Google Scholar 

  8. Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R.D., Wardle, D.A., and Lindahl, B.D. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618.

    CAS  Article  PubMed  Google Scholar 

  9. Costello, E.K. and Schmidt, S.K. 2006. Microbial diversity in alpine tundra wet meadow soil: novel chloroflexi from a cold, watersaturated environment. Appl. Environ. Microbiol. 8, 1471–1486.

    CAS  Google Scholar 

  10. Ding, X., Wu, C., Huang, J., and Zhou, R. 2015. Interphase microbial community characteristics in the fermentation cellar of chinese Luzhou-flavor liquor determined by PLFA and DGGE profiles. Food Res. Int. 72, 16–24.

    CAS  Article  Google Scholar 

  11. Dion, P. 2008. Extreme views on prokaryote evolution, pp. 45–70. In Dion, P. and Nautiyal, C.S. (eds.), Microbiology of extreme soils, Springer, Berlin Heidelberg, Germany.

    Google Scholar 

  12. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    CAS  Article  PubMed  Google Scholar 

  13. Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    CAS  Article  PubMed  Google Scholar 

  14. Edwards, I.P. and Zak, D.R. 2010. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol. Ecol. 19, 1469–1482.

    CAS  Article  PubMed  Google Scholar 

  15. Eilers, K.G., Debenport, S., Anderson, S., and Fierer, N. 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 50, 58–65.

    CAS  Article  Google Scholar 

  16. Fazi, S., Amalfitano, S., Pernthaler, J., and Puddu, A. 2005. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ. Microbiol. 7, 1633–1640.

    CAS  Article  PubMed  Google Scholar 

  17. Fierer, N., Bradford, M.A., and Jackson, R.B. 2008. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364.

    Article  Google Scholar 

  18. Fogel, R. and Hunt, G. 1979. Fungal and arboreal biomass in a western oregon douglas-fir ecosystem: distribution patterns and turnover. Can. J. Forest. Res. 9, 245–256.

    Article  Google Scholar 

  19. Fritze, H., Pietikäinen, J., and Pennanen, T. 2000. Distribution of microbial biomass and phospholipid fatty acids in podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565–573.

    CAS  Article  Google Scholar 

  20. Geng, R., Geng, Z., Huang, J., He, W., Hou, L., She, D., Zhao, J., and Shang, J. 2015. Diversity of ectomycorrhizal fungi associated with picea asperata in xin jiashan forest of qinling mountains. Wei Sheng Wu Xue Bao [Article in Chinese] 55, 905–915.

    Google Scholar 

  21. Gross, K.L., Pregitzer, K.S., and Burton, A.J. 1995. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 83, 357–367.

    Article  Google Scholar 

  22. Hakulinen, R., Kähkö nen, M.A., and Salkinoja-Salonen, M. 2005. Vertical distribution of sediment enzyme activities involved in the cycling of carbon, nitrogen, phosphorus and sulphur in three boreal rural lakes. Water Res. 39, 2319–2326.

    CAS  Article  PubMed  Google Scholar 

  23. Högberg, M.N., Briones, M.J., Keel, S.G., Metcalfe, D.B., Campbell, C., Midwood, A.J., Thornton, B., Hurry, V., Linder, S., Näsholm, T., et al. 2008. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 187, 485–493.

    Article  Google Scholar 

  24. Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Joshi, G. and Negi, G.C.S. 2015. Physico-chemical properties along soil profiles of two dominant forest types in Western Himalaya. Curr. Sci. India 109, 798–803.

    CAS  Google Scholar 

  26. Kasel, S., Bennett, L.T., and Tibbits, J. 2008. Land use influences soil fungal community composition across central Victoria, southeastern Australia. Soil Biol. Biochem. 40, 1724–1732.

    CAS  Article  Google Scholar 

  27. Langenheder, S. and Székely, A.J. 2011. Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J. 5, 1086–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Lauber, C.L., Strickland, M.S., Bradford, M.A., and Fierer, N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415.

    CAS  Article  Google Scholar 

  30. Li, H., Ye, D., Wang, X., Settles, M.L., Wang, J., and Hao, Z. 2014. Soil bacterial communities of different natural forest types in Northeast China. Plant Soil 383, 203–216.

    CAS  Article  Google Scholar 

  31. Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Högberg, P., Stenlid, J., and Finlay, R.D. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620.

    CAS  Article  PubMed  Google Scholar 

  32. López-Mondéjar, R., Voríšková, J., Vetrovský, T., and Baldrian, P. 2015. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol. Biochem. 87, 43–50.

    Article  Google Scholar 

  33. Maidak, B.L., Olsen, G.J., Larsen, N., Overbeek, R., McCaughey, M.J., and Woese, C.R. 1997. The RDP (ribosomal database project). Nucleic Acids Res. 25, 109–110.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. McCaig, A.E., Glover, L.A., and Prosser, J.I. 1999. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol. 65, 1721–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Brien, H.E., Parrent, J.L., Jackson, J.A., Moncalvo, J.M., and Vilgalys, R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71, 5544–5550.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Osborn, A.M., Moore, E.R.B., and Timmis, K.N. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2, 39–50.

    CAS  Article  PubMed  Google Scholar 

  37. Peralta, R.M., Ahn, C., and Gillevet, P.M. 2013. Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci. Total Environ. 443, 725–732.

    CAS  Article  PubMed  Google Scholar 

  38. Robertson, G.P., Hutson, M.A., Evans, F.C., and Tiedje, J.M. 1988. Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology 69, 1517–1524.

    Article  Google Scholar 

  39. Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K., Kent, A.D., Daroub, S.H., Camargo, F.A., Farmerie, W.G., and Triplett, E.W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., and Fierer, N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351.

    Article  PubMed  Google Scholar 

  41. Schadt, C.W., Martin, A.P., Lipson, D.A., and Schmidt, S.K. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301, 1359–1361.

    CAS  Article  PubMed  Google Scholar 

  42. Senga, Y., Hiroki, M., Nakamura, Y., Watarai, Y., Watanabe, Y., and Nohara, S. 2011. Vertical profiles of DIN, DOC, and microbial activities in the wetland soil of Kushiro Mire, northeastern Japan. Limnology 12, 17–23.

    CAS  Article  Google Scholar 

  43. Smith, S.E., Smith, F.A., and Jakobsen, I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16–20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Šnajdr, J., Cajthaml, T., Valášková, V., Merhautová, V., Petránková, M., Spetz, P., Leppänen, K., and Baldrian, P. 2011. Transformation of Quercus petraea, litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol. Ecol. 75, 291–303.

    Article  PubMed  Google Scholar 

  45. Šnajdr, J., Valášková, V., Merhautová, V., Herinková, J., Cajthaml, T., and Baldrian, P. 2008. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea, forest soil. Soil Biol. Biochem. 40, 2068–2075.

    Article  Google Scholar 

  46. Stribley, D.P., Tinker, P.B., and Rayner, J.H. 1980. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytol. 86, 261–266.

    CAS  Article  Google Scholar 

  47. Štursová, M., Žifcáková, L., Leigh, M.B., Burgess, R., and Baldrian, P. 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746.

    Article  PubMed  Google Scholar 

  48. Thomas, G.W. 1996. Soil pH and soil acidity, pp. 475–490. In Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. (eds.), Methods of Soil Analysis. Part 3. Soil Science Society of America. Sparks D, USA.

    Google Scholar 

  49. Tiquia, S.M., Lloyd, J., Herms, D.A., Hoitink, H.A.J., and Michel, F.C.Jr. 2002. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Appl. Soil Ecol. 21, 31–48.

    Article  Google Scholar 

  50. VoRÍšková, J. and Baldrian, P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486.

    Article  PubMed  Google Scholar 

  51. Voríšková, J., Brabcová, V., Cajthaml, T., and Baldrian, P. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 201, 269–278.

    Article  PubMed  Google Scholar 

  52. Xu, Z.Y., Tang, M., Chen, H., Ban, Y.H., and Zhang, H.H. 2012. Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Sci. Total Environ. 435–436, 453–464.

    Article  PubMed  Google Scholar 

  53. Walkley, A. 1935. An examination of methods for determining organic carbon and nitrogen in soils. (with one text-figure.). J. Agricul. Sci. 25, 598–609.

    CAS  Google Scholar 

  54. Wang, D., Geng, Z.C., She, D., He, W.X., and Hou, L. 2015. Soil organic carbon storage and vertical distribution of carbon and nitrogen under different forest types in the Qinling mountains. (in Chinese) Chinese J. Appl. Ecol. 25, 1569–1577.

    Google Scholar 

  55. Yao, X.M., Guo-Zhong, L., Yang, H., Zhao, Z.H., and Chen, R. 2007. Studies of fungal flora in forest soil of Changbai mountains. J. Fungal Res. (in Chinese) 5, 43–46.

    Google Scholar 

  56. Žifcáková, L., Vetrovský, T., Howe, A., and Baldrian, P. 2015. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288–301.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zengchao Geng.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, C., Geng, Z., Wang, Q. et al. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest. J Microbiol. 55, 684–693 (2017). https://doi.org/10.1007/s12275-017-6466-8

Download citation

Keywords

  • microbial communities
  • deeper soil horizons
  • natural secondary forest
  • high-throughput sequencing
  • alpha-diversity