Advertisement

Journal of Microbiology

, Volume 55, Issue 2, pp 130–136 | Cite as

Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii

  • Ming-Feng Lin
  • Yun-You Lin
  • Chung-Yu LanEmail author
Microbial Genetics, Genomics and Molecular Biology

Abstract

Efflux pumps play an important role in antimicrobial resistance for Acinetobacter baumannii. However, the function of the Emr pump system and the relationship between Emr and drug resistance has not been characterized in A. baumannii. In this study, four possible groups of emr-like genes were found by searching a genome database. Among them, A1S_1772 (emrB) and A1S_1773 (emrA) were demonstrated to be co-transcribed as a single operon. Moreover, during osmotic stress, A1S_1772 showed the largest change in gene expression compared to the other emrB-like genes, and deletion of A1S_1772 (AB ΔemrB) significantly slowed cell growth in 20% sucrose. Using a phenotypic microarray analysis, the AB ΔemrB mutant was more susceptible to colistin and nafcillin, paromomycin, spiramycin, and D,L-serine hydroxmate than the wild type. The spot assay, time kill assay and minimal inhibition concentration determination also indicated that the wild type could tolerate colistin better than the AB ΔemrB mutant. Finally, the increased expression levels of all emrB-like genes, including A1S_0775, A1S_0909, A1S_1772, and A1S_1799, in colistin resistance-induced A. baumannii further supported the possible involvement of the emrB genes in A. baumannii colistin resistance. Together, the Emr pump systems in A. baumannii contribute to adaptation to osmotic stress and resistance to colistin.

Keywords

efflux pump colistin antimicrobial resistance Acinetobacter baumannii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2017_6408_MOESM1_ESM.pdf (969 kb)
Supplementary material, approximately 972 KB.

References

  1. Adams, M.D., Nickel, G.C., Bajaksouzian, S., Lavender, H., Murthy, A.R., Jacobs, M.R., and Bonomo, R.A. 2009. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother. 53, 3628–3634.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bengoechea, J.A. and Skurnik, M. 2000. Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol. Microbiol. 37, 67–80.CrossRefPubMedGoogle Scholar
  3. Bialvaei, A.Z. and Samadi Kafil, H. 2015. Colistin, mechanisms and prevalence of resistance. Curr. Med. Res. Opin. 31, 707–721.CrossRefPubMedGoogle Scholar
  4. Chau, S.L., Chu, Y.W., and Houang, E.T. 2004. Novel resistancenodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob. Agents Chemother. 48, 4054–4055.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen, S., Cui, S., McDermott, P.F., Zhao, S., White, D.G., Paulsen, I., and Meng, J. 2007. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica Serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob. Agents Chemother. 51, 535–542.CrossRefPubMedGoogle Scholar
  6. CLSI. 2014. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute, 2014.Google Scholar
  7. Colmer, J.A., Fralick, J.A., and Hamood, A.N. 1998. Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol. Microbiol. 27, 63–72.CrossRefPubMedGoogle Scholar
  8. Coyne, S., Courvalin, P., and Perichon, B. 2011. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 55, 947–953.CrossRefPubMedGoogle Scholar
  9. Coyne, S., Rosenfeld, N., Lambert, T., Courvalin, P., and Perichon, B. 2010. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 54, 4389–4393.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Damier-Piolle, L., Magnet, S., Bremont, S., Lambert, T., and Courvalin, P. 2008. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob. Agents Chemother. 52, 557–562.CrossRefPubMedGoogle Scholar
  11. Fournier, P.E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Richet, H., Robert, C., Mangenot, S., Abergel, C., et al. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2, e7.CrossRefGoogle Scholar
  12. Furukawa, H., Tsay, J.T., Jackowski, S., Takamura, Y., and Rock, C.O. 1993. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J. Bacteriol. 175, 3723–3729.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hooper, D.C. 2005. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin. Infect. Dis. 40, 1811–1817.CrossRefPubMedGoogle Scholar
  14. Lee, K., Yong, D., Jeong, S.H., and Chong, Y. 2011. Multidrug-resistant Acinetobacter spp.: increasingly problematic nosocomial pathogens. Yonsei Med. J. 52, 879–891.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lin, M.F. and Lan, C.Y. 2014. Antimicrobial resistance in Acinetobacter baumannii: from bench to bedside. World J. Clin. Cases 2, 787–814.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lin, M.F., Lin, Y.Y., and Lan, C.Y. 2015. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in Acinetobacter baumannii. PLoS One 10, e0132843.Google Scholar
  17. Lin, M.F., Lin, Y.Y., Yeh, H.W., and Lan, C.Y. 2014. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol. 14, 119.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lomovskaya, O. and Lewis, K. 1992. Emr, an Escherichia coli locus for multidrug resistance. Proc. Natl. Acad. Sci. USA 89, 8938–8942.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lomovskaya, O., Lewis, K., and Matin, A. 1995. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J. Bacteriol. 177, 2328–2334.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Magnet, S., Courvalin, P., and Lambert, T. 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45, 3375–3380.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Moffatt, J.H., Harper, M., Adler, B., Nation, R.L., Li, J., and Boyce, J.D. 2011. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3022–3024.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moffatt, J.H., Harper, M., Harrison, P., Hale, J.D., Vinogradov, E., Seemann, T., Henry, R., Crane, B., St Michael, F., Cox, A.D., et al. 2010. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Piddock, L.J. 2006. Multidrug-resistance efflux pumps -not just for resistance. Nat. Rev. Microbiol. 4, 629–636.CrossRefPubMedGoogle Scholar
  24. Poole, K. 2002. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr. Pharm. Biotechnol. 3, 77–98.CrossRefPubMedGoogle Scholar
  25. Rajamohan, G., Srinivasan, V.B., and Gebreyes, W.A. 2010. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 65, 1919–1925.CrossRefPubMedGoogle Scholar
  26. Ribera, A., Roca, I., Ruiz, J., Gibert, I., and Vila, J. 2003. Partial characterization of a transposon containing the tet(A) determinant in a clinical isolate of Acinetobacter baumannii. J. Antimicrob. Chemother. 52, 477–480.CrossRefPubMedGoogle Scholar
  27. Richmond, G.E., Chua, K.L., and Piddock, L.J. 2013. Efflux in Acinetobacter baumannii can be determined by measuring accumulation of H33342 (bis-benzamide). J. Antimicrob. Chemother. 68, 1594–1600.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Roca, I., Marti, S., Espinal, P., Martinez, P., Gibert, I., and Vila, J. 2009. CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 53, 4013–4014.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ruzin, A., Keeney, D., and Bradford, P.A. 2007. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J. Antimicrob. Chemother. 59, 1001–1004.CrossRefPubMedGoogle Scholar
  30. Sugawara, E. and Nikaido, H. 2012. OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J. Bacteriol. 194, 4089–4096.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tikhonova, E.B., Dastidar, V., Rybenkov, V.V., and Zgurskaya, H.I. 2009. Kinetic control of TolC recruitment by multidrug efflux complexes. Proc. Natl. Acad. Sci. USA 106, 16416–16421.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vila, J., Marti, S., and Sanchez-Cespedes, J. 2007. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 59, 1210–1215.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MedicineNational Taiwan University Hospital Chu-Tung BranchHsin-Chu CountyTaiwan
  2. 2.Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsin-Chu CityTaiwan
  3. 3.Department of Life ScienceNational Tsing Hua UniversityHsin-Chu CityTaiwan

Personalised recommendations