Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis

Abstract

The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.

This is a preview of subscription content, log in to check access.

References

  1. Ball, D.W. 2006. Concentration scales for sugar solutions. J. Chem. Educ. 83, 1489–1491.

    CAS  Article  Google Scholar 

  2. Bartnicki-Garcia, S. 1973. Fundamental aspects of hyphal morphogenesis. Symp. Soc. Gen. Microbiol. 23, 245–257.

    Google Scholar 

  3. Bowman, S.M. and Free, S.J. 2006. The structure and synthesis of the fungal cell wall. Bioassays 28, 799–808.

    Article  Google Scholar 

  4. Cabib, E., Bowers, B., Sburlati, A., and Silverman, S.J. 1988. Fungal cell wall synthesis: the construction of a biological structure. Microbiol. Sci. 5, 370–375.

    CAS  PubMed  Google Scholar 

  5. Feofilova, E.P. 1983. Fungal Cell Wall. Nauka, Moscow, p. 248.

    Google Scholar 

  6. Feofilova, E.P. 2002. Key role of chitin in fungal cell wall, in Chitin and Chitosan: Production, Properties, and Application, pp. 91–111. Nauka, Moscow, Russia.

    Google Scholar 

  7. Fontaine, T., Hartland, R.P., Beauvais, A., Diaquin, M., and Latge, J.P. 1997. Purification and characterization of an endo-l,3-β-glucanase from Aspergillus fumigatus. Eur. J. Biochem. 243, 315–321.

    CAS  Article  PubMed  Google Scholar 

  8. Gull, K. and Newsam, R.J. 1975. Meiosis in basidiomycetous Fungi I. Fine structure of spindle pole body organization. Protoplasma 83, 247–257.

    CAS  Article  PubMed  Google Scholar 

  9. Herrera-Estrella, A. and Chet, I. 1999. Chitinases in biological control. In Jolles, P. and Muzarelli, R. (eds.), Chitin and chitinases, pp. 171–184. Birkhausen Verlag, Basel, Switzerland.

    Google Scholar 

  10. Jenkinson, T.S., Celio, G.J., Padamsee, M., Dentinger, B.T.M., Meyer, M.L., and McLaughlin, D.J. 2008. Conservation of cytoplasmic organization in the cystidia of Suillus species. Mycologia 100, 539–547.

    Article  PubMed  Google Scholar 

  11. Kamada, T., Fujii, T., Nakagawa, T., and Takenaru, T. 1985. Changes in l,3-β-glucanase activities during stipe elongation in Coprinus cinereus. Curr. Microbiol. 12, 251–260.

    Article  Google Scholar 

  12. Kamzolkina, O.V., Mazheĭka, I.S., Shtaer, O.V., Kudriavtseva, O.A., and Mukhin, V.A. 2014. Endomembrane system of fungi: traditional and modern conceptions. Tsitologiia 56, 549–561.

    CAS  PubMed  Google Scholar 

  13. Kanda, K., Sato, T., Ishii, S., Enei, H., and Ejiri, S. 1996a. Purification and properties of tyrosinase isozymes from the gill of Lentinus edodes fruiting body. Biosci. Biotechnol. Biochem. 60, 1273–1278.

    CAS  Article  PubMed  Google Scholar 

  14. Kanda, K., Sato, T., Suzuki, K., Ishi, S., Ejiri, S., and Enei, H. 1996b. Relationships between tyrosinase activity and gill browning during preservation of Lentinus edodes fruit-bodies. Biosci. Biotechnol. Biochem. 60, 479–480.

    CAS  Article  PubMed  Google Scholar 

  15. Kozlova, M.V. and Kamzolkina, O.V. 2004. Ultrastructure of the cell wall in vegetative mycelia of Agaricus bisporus. Tsitologiia 46, 191–201.

    CAS  PubMed  Google Scholar 

  16. Matrosova, E.V., Mazheĭka, I.S., Kudriavtseva, O.A., and Kamzolkina, O.V. 2009. Morphogenesis and ultrastructure of basidiomycetes Agaricus and Pleurotus mitochondria. Tsitologiia 51, 490–499.

    CAS  PubMed  Google Scholar 

  17. Mendoza, C.G. 1992. Cell wall structure and protoplast reversion in basidiomycetes. World J. Microbiol. Biotechnol. 1, 36–38.

    Article  Google Scholar 

  18. Michalenko, G.O., Hohl, H.L., and Rast, D. 1976. Chemistry and architecture of the mycelial wall of Agaricus bisporus. J. Gen. Microbiol. 92, 252–262.

    Article  Google Scholar 

  19. Osterman, L.A. 1981. Methods for Investigation of Proteins and Nucleic Acids: Electrophoresis and Ultracentrifugation, p. 288. Nauka, Moscow, Russia.

    Google Scholar 

  20. Perry, C.R., Smith, M., Britnell, C.H., Wood, D.A., and Thurston, C.F. 1993. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J. Gen. Microbiol. 139, 1209–1218.

    CAS  Article  PubMed  Google Scholar 

  21. Polacheck, Y. and Rosenberger, R.F. 1975. Autolytic enzymes in hyphae of Aspergillus nidulans: their action on old and newly formed walls. J. Bacteriol. 121, 332–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Raguz, S.I., Yagüe, E., Wood, D.A., and Thurston, C.F. 1992. Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus. Gene 119, 183–190.

    CAS  Article  PubMed  Google Scholar 

  23. Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell. Biol. 17, 208–212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Sakamoto, Y., Irie, T., and Sato, T. 2005a. Isolation and characterization of a fruiting body-specific exo-beta-1, 3-glucanase-encoding gene, exg1, from Lentinula edodes. Curr. Genet. 47, 244–252.

    CAS  Article  PubMed  Google Scholar 

  25. Sakamoto, Y., Minato, K., Nagai, M., Mizuno, M., and Sato, T. 2005b. Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-beta-1, 3-glucanase. Curr. Genet. 48, 195–203.

    CAS  Article  PubMed  Google Scholar 

  26. Sakamoto, Y., Nakade, K., and Sato, T. 2009. Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr. Genet. 55, 409–423.

    CAS  Article  PubMed  Google Scholar 

  27. Saksena, K.N., Marino, R., Haller, M.N., and Lemke, P.A. 1976. Study on development of Agaricus bisporus by fluorescent microscopy and scanning electron microscopy. J. Bacteriol. 126, 417–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Suh, S.O., Hirata, A., Sugiyama, J., and Komagata, K. 1993. Septal ultrastructure of basidiomycetous yeasts and their taxonomic implications with observations on the ultrastructure of Erythrobasidium hasegawianum and Sympodiomycopsis paphiopedili. Mycologia 85, 30–37.

    Article  Google Scholar 

  29. Thurston, C.F. 1994. The structure and function fungal laccase. J. Microbiol. 140, 19–26.

    CAS  Article  Google Scholar 

  30. Van Gelder, C., Flurkey, W., and Wichers, H. 1997. Sequence and structural features of plant and fungal tyrosinases. Phytochem. 45, 1309–1323.

    Article  Google Scholar 

  31. Vetchinkina, E.P. and Nikitina, V.E. 2007. Morphological patterns of mycelial growth and fruition of some strains of an edible xylotrophic basidiomycete Lentinus edodes. Izv. Samar. Nauch. Tsentr. Ross. Akad. Sci. 9, 1085–1090.

    Google Scholar 

  32. Whitaker, J.R. 1995. Food Enzymes: Structure and Function, p. 284. In Wong, D. (ed.), Chapman and Hall.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Vetchinkina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vetchinkina, E., Kupryashina, M., Gorshkov, V. et al. Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis. J Microbiol. 55, 280–288 (2017). https://doi.org/10.1007/s12275-017-6320-z

Download citation

Keywords

  • basidiomycete morphogenesis
  • gene expression
  • lytic enzymes
  • phenol oxidases
  • cell wall ultrastructure