Skip to main content
Log in

Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME-1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N 5,N 10-methenyl-H4MPT reductase (mer) and CoB-CoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahk, J.J., Kim, J.H., Kong, G.S., Park, Y., Lee, H., Park, Y., and Park, K.P. 2010. Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea. Geosci. J. 13, 371–385.

    Article  Google Scholar 

  • Bäumer, S., Murakami, E., Brodersen, J., Gottschalk, G., Ragsdale, S.W., and Deppenmeier, U. 1998. The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase. FEBS Lett. 428, 295–298.

    PubMed  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. Met. 57, 289–300.

    Google Scholar 

  • Blumenberg, M., Seifert, R., Reitner, J., Pape, T., and Michaelis, W. 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc. Natl. Acad. Sci. USA 101, 11111–11116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Cui, M., Ma, A., Qi, H., Zhuang, X., and Zhuang, G. 2015. Anaerobic oxidation of methane: an “active” microbial process. Microbiology Open 4, 1–11.

    Article  PubMed  Google Scholar 

  • Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, W. 1958. On grouping for maximum homogeneity. J. Amer. Statist. Assoc. 53, 789–798.

    Article  Google Scholar 

  • Guy, L. and Ettema, T.J.G. 2011. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587.

    Article  CAS  PubMed  Google Scholar 

  • Hallam, S.J., Girguis, P.R., Preston, C.M., Richardson, P.M., and DeLong, E.F. 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69, 5483–5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Richardson, P.M., Rokhsar, D., and Delong, E.F. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science (New York, N.Y.) 305, 1457–1462.

    Article  CAS  Google Scholar 

  • Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.

    Article  CAS  PubMed  Google Scholar 

  • Hedderich, R., Berkessel, A., and Thauer, R.K. 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (Strain Marburg). Eur. J. Biochem. 193, 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Heiden, S., Hedderich, R., Setzke, E., and Thauer, R.K. 1994. Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri. Eur. J. Biochem. 221, 855–861.

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F. 1999. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805.

    Article  CAS  PubMed  Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8, 451–463.

    Article  CAS  Google Scholar 

  • Hong, W.L., Torres, M.E., Kim, J.H., Choi, J., and Bahk, J.J. 2013. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin. Biogeochemistry 115, 129–148.

    Article  CAS  Google Scholar 

  • Joye, S.B. 2012. Microbiology: a piece of the methane puzzle. Nature 491, 538–539.

    Article  CAS  PubMed  Google Scholar 

  • Knittel, K. and Boetius, A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334.

    Article  CAS  PubMed  Google Scholar 

  • Knittel, K., Lösekann, T., Boetius, A., Kort, R., and Amann, R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger, M., Meyerdierks, A., Glöckner, F.O., Amann, R., Widdel, F., Kube, M., Reinhardt, R., Kahnt, J., Böcher, R., Thauer, R.K., et al. 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426, 878–881.

    Article  PubMed  Google Scholar 

  • Lee, S.H. and Chough, S.K. 2002. Distribution and origin of shallow gas in deep-sea sediments of the Ulleung Basin, East Sea (Sea of Japan). Geo-Marine Lett. 22, 204–209.

    Article  Google Scholar 

  • Lee, J.W., Kwon, K.K., Azizi, A., Oh, H.M., Kim, W., Bahk, J.J., Lee, D.H., and Lee, J.H. 2013. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar. Petrol. Geol. 47, 136–146.

    Article  CAS  Google Scholar 

  • Lim, D., Choi, J., Xu, Z., Kim, M., Choi, D., Jung, H., and Lee, P. 2009. Methane-derived authigenic carbonates from the Ulleung basin sediments, East Sea of Korea. Cont. Shelf. Res. 29, 1588–1596.

    Article  Google Scholar 

  • Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 1–8.

    Article  Google Scholar 

  • Meyerdierks, A., Kube, M., Kostadinov, I., Teeling, H., Glöckner, F.O., Reinhardt, R., and Amann, R. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439.

    Article  CAS  PubMed  Google Scholar 

  • Newcombe, R.G. 1998. Improved confidence intervals for the difference between binomial proportions based on paired data. Stat. Med. 17, 2635–2650.

    Article  CAS  PubMed  Google Scholar 

  • Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D., and De-Long, E.F. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487.

    Article  CAS  PubMed  Google Scholar 

  • Parks, D.H. and Beiko, R.G. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715–721.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, I.A.C., Ramos, A.R., Grein, F., Marques, M.C., da Silva, S.M., and Venceslau, S.S. 2011. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front. Microbiol. 2, 69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pires, R.H., Lourenç o, A.I., Morais, F., Teixeira, M., Xavier, A.V., Saraiva, L.M., and Pereira, I.A.C. 2003. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim. Biophys. Acta. 1605, 67–82.

    Article  CAS  PubMed  Google Scholar 

  • Reeve, J.N., Nölling, J., Morgan, R.M., and Smith, D.R. 1997. Methanogenesis: genes, genomes, and who’s on first? J.Bacteriol. 179, 5975–5986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roalkvam, I., Jørgensen, S.L., Chen, Y., Stokke, R., Dahle, H., Hocking, W.P., Lanzén, A., Haflidason, H., and Steen, I.H. 2011. New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol. Ecol. 78, 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Ruff, S.E., Biddle, J.F., Teske, A.P., Knittel, K., Boetius, A., and Ramette, A. 2015. Global dispersion and local diversification of the methane seep microbiome. Proc. Natl. Acad. Sci. USA 112, 4015–4020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, B.J., Collett, T.S., Riedel, M., Kim, G.Y., Chun, J.H., Bahk, J.J., Lee, J.Y., Kim, J.H., and Yoo, D.G. 2013. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Mar. Pet. Geol. 47, 1–20.

    Article  Google Scholar 

  • Ryu, B.J., Riedel, M., Kim, J.H., Hyndman, R.D., Lee, Y.J., Chung, B.H., and Kim, I.S. 2009. Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea. Mar. Pet. Geol. 26, 1483–1498.

    Article  CAS  Google Scholar 

  • Stokke, R., Roalkvam, I., Lanzen, A., Haflidason, H., and Steen, I.H. 2012. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 14, 1333–1346.

    Article  CAS  PubMed  Google Scholar 

  • Thauer, R.K., Kaster, A.K., Goenrich, M., Schick, M., Hiromoto, T., and Shima, S. 2010. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, D.L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, D.L. and Reeburgh, W.S. 2000. New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2, 477–484.

    Article  CAS  PubMed  Google Scholar 

  • Vigneron, A., Cruaud, P., Pignet, P., Caprais, J.C., Cambon-Bonavita, M.A., Godfroy, A., and Toffin, L. 2013. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 7, 1595–1608.

  • Wang, F.P., Zhang, Y., Chen, Y., He, Y., Qi, J., Hinrichs, K.U., Zhang, X.X., Xiao, X., and Boon, N. 2014. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 8, 1069–1078.

  • Welander, P.V. and Metcalf, W.W. 2008. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway. J. Bacteriol. 190, 1928–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hyun Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Kwon, K.K., Bahk, JJ. et al. Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea. J Microbiol. 54, 814–822 (2016). https://doi.org/10.1007/s12275-016-6379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6379-y

Keywords

Navigation