Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Journal of Microbiology
  3. Article
Inhibitory effects of bee venom and its components against viruses in vitro and in vivo
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Melittin: a venom-derived peptide with promising anti-viral properties

17 August 2019

Hamed Memariani, Mojtaba Memariani, … Mohammad Shahidi-Dadras

Detoxification of Bee Venom Increases Its Anti-inflammatory Activity and Decreases Its Cytotoxicity and Allergenic Activity

20 September 2021

Hyo-Sung Lee, Yong Soo Kim, … Kee K. Kim

Egyptian cobra (Naja haje haje) venom phospholipase A2: a promising antiviral agent with potent virucidal activity against simian rotavirus and bovine coronavirus

27 July 2022

Walaa H. Salama, Mohamed N. F. Shaheen & Yasser E. Shahein

Inhibitory Activity of Honeysuckle Extracts against Influenza A Virus In Vitro and In Vivo

12 October 2020

Mengwei Li, Yuxu Wang, … Min Guo

Characterization, antimicrobial and antitumor activity of superoxide dismutase extracted from Egyptian honeybee venom (Apis mellifera lamarckii)

20 February 2023

Mohamed M. Abdel-Monsef, Doaa A. Darwish, … Mahmoud A. Ibrahim

Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review

20 June 2022

William Gustavo Lima, César Quadros Maia, … Jaqueline Maria Siqueira Ferreira

The antibacterial activity and toxin production control of bee venom in mouse MRSA pneumonia model

27 July 2020

Ryong Kong, Young-Seob Lee, … Ok-Hwa Kang

Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2

29 October 2021

Andrei E. Siniavin, Maria A. Streltsova, … Yuri N. Utkin

Melittin: from honeybees to superbugs

01 March 2019

Hamed Memariani, Mojtaba Memariani, … Hamideh Moravvej

Download PDF
  • Virology
  • Published: 26 November 2016

Inhibitory effects of bee venom and its components against viruses in vitro and in vivo

  • Md Bashir Uddin1,2,
  • Byeong-Hoon Lee1,
  • Chamilani Nikapitiya1,
  • Jae-Hoon Kim1,
  • Tae-Hwan Kim1,
  • Hyun-Cheol Lee1,
  • Choul Goo Kim3,
  • Jong-Soo Lee1 &
  • …
  • Chul-Joong Kim1 

Journal of Microbiology volume 54, pages 853–866 (2016)Cite this article

  • 3192 Accesses

  • 62 Citations

  • 10 Altmetric

  • Metrics details

An Erratum to this article was published on 26 January 2017

Abstract

Bee venom (BV) from honey bee (Apis Melifera L.) contains at least 18 pharmacologically active components including melittin (MLT), phospholipase A2 (PLA2), and apamin etc. BV is safe for human treatments dose dependently and proven to possess different healing properties including antibacterial and antiparasitidal properties. Nevertheless, antiviral properties of BV have not well investigated. Hence, we identified the potential antiviral properties of BV and its component against a broad panel of viruses. Co-incubation of non-cytotoxic amounts of BV and MLT, the main component of BV, significantly inhibited the replication of enveloped viruses such as Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV). Additionally, BV and MLT also inhibited the replication of non-enveloped viruses such as Enterovirus-71 (EV-71) and Coxsackie Virus (H3). Such antiviral properties were mainly explained by virucidal mechanism. Moreover, MLT protected mice which were challenged with lethal doses of pathogenic influenza A H1N1 viruses. Therefore, these results provides the evidence that BV and MLT could be a potential source as a promising antiviral agent, especially to develop as a broad spectrum antiviral agent.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Arts, I.C. and Hollman, P.C. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317S–325S.

    CAS  PubMed  Google Scholar 

  • Baghian, A., Jaynes, J., Enright, F., and Kousoulas, K.G. 1997. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Baghian, A. and Kousoulas, K.G. 1993. Role of the Na+, K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn1 mutation to Syn+ (wild-type) phenotype. Virology 196, 548–556.

    Article  CAS  PubMed  Google Scholar 

  • Billingham, M.E., Morley, J., Hanson, J.M., Shipolini, R.A., and Vernon, C.A. 1973. Letter: an anti-inflammatory peptide from bee venom. Nature 245, 163–164.

    Article  CAS  PubMed  Google Scholar 

  • Bouvier, N.M. and Lowen, A.C. 2010. Animal models for influenza virus pathogenesis and transmission. Viruses 2, 1530–1563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., and Doerr, H.W. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361, 2045–2046.

    Article  CAS  PubMed  Google Scholar 

  • Clague, M.J. and Cherry, R.J. 1988. Comparison of p25 presequence peptide and melittin. Red blood cell haemolysis and band 3 aggregation. Biochem. J. 252, 791–794.

    CAS  PubMed  Google Scholar 

  • Coil, D.A. and Miller, A.D. 2004. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J. Virol. 78, 10920–10926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppoletti, J. and Abbott, A.J. 1990. Interaction of melittin with the (Na+ + K+)ATPase: evidence for a melittin-induced conformational change. Arch. Biochem. Biophys. 283, 249–257.

    Article  CAS  PubMed  Google Scholar 

  • DeGrado, W.F., Musso, G.F., Lieber, M., Kaiser, E.T., and Kezdy, F.J. 1982. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J. 37, 329–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey, C.E. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031, 143–161.

    Article  CAS  PubMed  Google Scholar 

  • Dufourcq, J., Faucon, J.F., Fourche, G., Dasseux, J.L., Le Maire, M., and Gulik-Krzywicki, T. 1986a. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim. Biophys. Acta 859, 33–48.

    Article  CAS  PubMed  Google Scholar 

  • Dufourc, E.J., Smith, I.C., and Dufourcq, J. 1986b. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 25, 6448–6455.

    Article  CAS  PubMed  Google Scholar 

  • Esser, A.F., Bartholomew, R.M., Jensen, F.C., and Muller-Eberhard, H.J. 1979. Disassembly of viral membranes by complement independent of channel formation. Proc. Natl. Acad. Sci. USA 76, 5843–5847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastaminza, P., Kapadia, S.B., and Chisari, F.V. 2006. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J. Virol. 80, 11074–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habermann, E. 1972. Bee and wasp venoms. Science 177, 314–322.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, D.S., Kim, S.K., and Bae, H. 2015. Therapeutic effects of bee venom on immunological and neurological diseases. Toxins 7, 2413–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, H.F., Li, X.J., and Zhang, H.Y. 2009. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 10, 194–200.

    CAS  PubMed  Google Scholar 

  • Kim, J.H., Weeratunga, P., Kim, M.S., Nikapitiya, C., Lee, B.H., Uddin, M.B., Kim, T.H., Yoon, J.E., Park, C., Ma, J.Y., et al. 2016. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement. Altern. Med. 16, 265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuchinka, E. and Seelig, J. 1989. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid headgroup conformation. Biochemistry 28, 4216–4221.

    CAS  Google Scholar 

  • Lariviere, W.R. and Melzack, R. 1996. The bee venom test: a new tonic-pain test. Pain 66, 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., Cao, L., Yang, J., Zhang, Y., Shi, W., Cao, Z., et al. 2011. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARSCoV and influenza H5N1 viruses. Peptides 32, 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  • Lorin, C., Combredet, C., Labrousse, V., Mollet, L., Desprès, P., and Tangy, F. 2005. A paediatric vaccination vector based on live attenuated measles vaccine. Therapie 60, 227–233.

    Article  PubMed  Google Scholar 

  • Mahaney, J.E. and Thomas, D.D. 1991. Effects of melittin on molecular dynamics and Ca-ATPase activity in sarcoplasmic reticulum membranes: electron paramagnetic resonance. Biochemistry 30, 7171–7180.

    Article  CAS  PubMed  Google Scholar 

  • Maher, S. and McClean, S. 2006. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem. Pharmacol. 71, 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  • Marcos, J.F., Beachy, R.N., Houghten, R.A., Blondelle, S.E., and Pérez-Payá, E. 1995. Inhibition of a plant virus infection by analogs of melittin. Proc. Natl. Acad. Sci. USA 92, 12466–12469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matanic, V.C. and Castilla, V. 2004. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents 23, 382–389.

    Article  Google Scholar 

  • Park, H.J., Lee, S.H., Son, D.J., Oh, K.W., Kim, K.H., Song, H.S., Kim, G.J., Oh, G.T., Yoon, D.Y., and Hong, J.T. 2004. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit. Arthritis Rheum. 50, 3504–3515.

    Article  CAS  PubMed  Google Scholar 

  • Reed, L.J. and Muench, H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497.

    Google Scholar 

  • Scagnolari, C., Vicenzi, E., Bellomi, F., Stillitano, M.G., Pinna, D., Poli, G., Clementi, M., Dianzani, F., and Antonelli, G. 2004. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir. Ther. 9, 1003–1011.

    CAS  PubMed  Google Scholar 

  • Seal, B.S., King, D.J., and Bennett, J.D. 1995. Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. J. Clin. Microbiol. 33, 2624–2630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son, D.J., Lee, J.W., Lee, Y.H., Song, H.S., Lee, C.K., and Hong, J.T. 2007. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 115, 246–270.

    Article  CAS  PubMed  Google Scholar 

  • Strober, W. 2001. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3, Appendix 3B.

  • Terwilliger, T.C., Weissman, L., and Eisenberg, D. 1982. The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophys. J. 37, 353–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosteson, M.T., Holmes, S.J., Razin, M., and Tosteson, D.C. 1985. Melittin lysis of red cells. J. Membr. Biol. 87, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Triggiani, M., Granata, F., Frattini, A., and Marone, G. 2006. Activation of human inflammatory cells by secreted phospholipases A2. Biochim. Biophys. Acta. 1761, 1289–1300.

    Article  CAS  PubMed  Google Scholar 

  • Wachinger, M., Kleinschmidt, A., Winder, D., von Pechmann, N., Ludvigsen, A., Neumann, M., Holle, R., Salmons, B., Erfle, V., and Brack-Werner, R. 1998. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol. 79 (Pt 4), 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Wachinger, M., Saermark, T., and Erfle, V. 1992. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett. 309, 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Weeratunga, P., Uddin, M.B., Kim, M.S., Lee, B.H., Kim, T.H., Yoon, J.E., Ma, J.Y., Kim, H., and Lee, J.S. 2016. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components. J. Microbiol. 54, 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Y.Y., Chang, T.Y., Chen, S.T., Li, C., and Liu, H.S. 2003. Comparative study of enterovirus 71 infection of human cell lines. J. Med. Virol. 70, 109–118.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea

    Md Bashir Uddin, Byeong-Hoon Lee, Chamilani Nikapitiya, Jae-Hoon Kim, Tae-Hwan Kim, Hyun-Cheol Lee, Jong-Soo Lee & Chul-Joong Kim

  2. Faculty of Veterinary and Animal Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh

    Md Bashir Uddin

  3. Chung Jin Biotech Corporation, Ansan, 15577, Republic of Korea

    Choul Goo Kim

Authors
  1. Md Bashir Uddin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Byeong-Hoon Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Chamilani Nikapitiya
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jae-Hoon Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Tae-Hwan Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Hyun-Cheol Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Choul Goo Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Jong-Soo Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Chul-Joong Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Jong-Soo Lee or Chul-Joong Kim.

Additional information

These authors contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s12275-017-0668-y.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.B., Lee, BH., Nikapitiya, C. et al. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo . J Microbiol. 54, 853–866 (2016). https://doi.org/10.1007/s12275-016-6376-1

Download citation

  • Received: 08 August 2016

  • Revised: 13 September 2016

  • Accepted: 04 October 2016

  • Published: 26 November 2016

  • Issue Date: December 2016

  • DOI: https://doi.org/10.1007/s12275-016-6376-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • anti-viral activity
  • bee venom
  • melittin
  • virucidal effect
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.209.138

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.