Advertisement

Journal of Microbiology

, Volume 54, Issue 6, pp 440–444 | Cite as

Purification, crystallization, and preliminary X-ray crystallographic analysis of the Group III chaperonin from Carboxydothermus hydrogenoformans

  • Young Jun An
  • Sara E. Rowland
  • Frank T. Robb
  • Sun-Shin Cha
Article

Abstract

Chaperonins (CPNs) are megadalton sized ATP-dependent nanomachines that facilitate protein folding through complex cycles of complex allosteric articulation. They consist of two back-to-back stacked multisubunit rings. CPNs are usually classified into Group I and Group II. Here, we report the crystallization of both the AMPPNP (an ATP analogue) and ADP bound forms of a novel CPN, classified as belonging to a third Group, recently discovered in the extreme thermophile Carboxydothermus hydrogenoformans. Crystals of the two forms were grown by the vapor batch crystallization method at 295 K. Crystals of the Ch-CPN/AMPPNP complex diffracted to 3.0 Å resolution and belonged to the space group P422, with unit-cell parameters a = b = 186.166, c = 160.742 Å. Assuming the presence of four molecules in the asymmetric unit, the solvent content was estimated to be about 60.02%. Crystals of the Ch-CPN/ADP complex diffracted to 4.0 Å resolution and belonged to the space group P4212, with unit-cell parameters a = b = 209.780, c = 169.813Å. Assuming the presence of four molecules in the asymmetric unit, the solvent content was estimated to be about 70.19%.

Keywords

Group III chaperonins protein folding AT-Pfueled nanomachine crystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. 2008. Adapting proteostasis for disease intervention. Science 319, 916–919.CrossRefPubMedGoogle Scholar
  2. Bigotti, M.G. and Clarke, A.R. 2008. Chaperonins: The hunt for the group II mechanism. Arch. Biochem. Biophys. 474, 331–339.CrossRefPubMedGoogle Scholar
  3. Bukau, B. and Horwich, A.L. 1998. The hsp70 and hsp60 chaperone machines. Cell 92, 351–366.CrossRefPubMedGoogle Scholar
  4. Collaborative Computational Project, N. 1994. The ccp4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763.CrossRefGoogle Scholar
  5. Ditzel, L., Lowe, J., Stock, D., Stetter, K.O., Huber, H., Huber, R., and Steinbacher, S. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125–138.CrossRefPubMedGoogle Scholar
  6. Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J.S., Tempst, P., and Hartl, F.U. 1992. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778.PubMedPubMedCentralGoogle Scholar
  7. Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H., and Cowan, N.J. 1992. A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050.CrossRefPubMedGoogle Scholar
  8. Kabsch, W. 2010. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kim, S., Willison, K.R., and Horwich, A.L. 1994. Cystosolic chaperonin subunits have a conserved atpase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19, 543–548.CrossRefPubMedGoogle Scholar
  10. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.CrossRefPubMedGoogle Scholar
  11. Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Method. Enzymol. 276, 307–326.CrossRefGoogle Scholar
  12. Pereira, J.H., Ralston, C.Y., Douglas, N.R., Meyer, D., Knee, K.M., Goulet, D.R., King, J.A., Frydman, J., and Adams, P.D. 2010. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J. Biol. Chem. 285, 27958–27966.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Phipps, B.M., Hoffmann, A., Stetter, K.O., and Baumeister, W. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10, 1711–1722.PubMedPubMedCentralGoogle Scholar
  14. Ranson, N.A., Clare, D.K., Farr, G.W., Houldershaw, D., Horwich, A.L., and Saibil, H.R. 2006. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 13, 147–152.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Techtmann, S.M., Colman, A.S., Murphy, M.B., Schackwitz, W.S., Goodwin, L.A., and Robb, F.T. 2011. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria. Front. Microbiol. 2, 147.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Techtmann, S.M., Lebedinsky, A.V., Colman, A.S., Sokolova, T.G., Woyke, T., Goodwin, L., and Robb, F.T. 2012. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front. Microbiol. 3, 132.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Techtmann, S.M. and Robb, F.T. 2010. Archaeal-like chaperonins in bacteria. Proc. Natl. Acad. Sci. USA 107, 20269–20274.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Tilly, K., Murialdo, H., and Georgopoulos, C. 1981. Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc. Natl. Acad. Sci. USA 78, 1629–1633.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Wu, M., Ren, Q., Durkin, A.S., Daugherty, S.C., Brinkac, L.M., Dodson, R.J., Madupu, R., Sullivan, S.A., Kolonay, J.F., Haft, D.H., et al. 2005. Life in hot carbon monoxide: The complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1, e65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Xu, Z., Horwich, A.L., and Sigler, P.B. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750.CrossRefPubMedGoogle Scholar
  21. Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A.L., Sternlicht, M.L., and Sternlicht, H. 1992. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Young Jun An
    • 1
  • Sara E. Rowland
    • 2
    • 3
  • Frank T. Robb
    • 2
    • 4
    • 3
  • Sun-Shin Cha
    • 5
  1. 1.Korea Institute of Ocean Science and TechnologyAnsanRepublic of Korea
  2. 2.Institute of Marine and Environmental TechnologyBaltimoreUSA
  3. 3.Institute for Bioscience and Biotechnology ResearchRockvilleUSA
  4. 4.Department of Microbiology and ImmunologyUniversity of MarylandBaltimoreUSA
  5. 5.Department of Chemistry and Nano ScienceEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations