Skip to main content
Log in

Developmental regulators in Aspergillus fumigatus

  • Review
  • Biology of Human Fungal Pathogen
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, A., Fernandez-Molina, J.V., Bikandi, J., Ramirez, A., Margareto, J., Sendino, J., Hernando, F.L., Ponton, J., Garaizar, J., and Rementeria, A. 2010. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev. Iberoam. Micol. 27, 155–182.

    Article  PubMed  Google Scholar 

  • Adams, T.H., Wieser, J.K., and Yu, J.H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62, 35–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Aguirre, J. 1993. Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol. Microbiol, 8, 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Aguirre, J., Adams, T.H., and Timberlake, W.E. 1990. Spatial control of developmental regulatory genes in Aspergillus nidulans. Exp. Mycol. 14, 290–293.

    Article  CAS  Google Scholar 

  • Ahmed, Y.L., Gerke, J., Park, H.S., Bayram, O., Neumann, P., Ni, M., Dickmanns, A., Kim, S.C., Yu, J.H., Braus, G.H., et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB. PLoS Biol. 11, e1001750.

    Article  PubMed Central  PubMed  Google Scholar 

  • Al-Bader, N., Vanier, G., Liu, H., Gravelat, F.N., Urb, M., Hoareau, C.M., Campoli, P., Chabot, J., Filler, S.G., and Sheppard, D.C. 2010. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect. Immun. 78, 3007–3018.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alkhayyat, F., Chang Kim, S., and Yu, J.H. 2015. Genetic control of asexual development in Aspergillus fumigatus. Adv. Appl. Microbiol. 90, 93–107.

    Article  PubMed  Google Scholar 

  • Andrianopoulos, A. and Timberlake, W.E. 1991. ATTS, a new and conserved DNA binding domain. Plant Cell 3, 747–748.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Andrianopoulos, A. and Timberlake, W.E. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14, 2503–2515.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bayram, O. and Braus, G.H. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Bayram, O., Krappmann, S., Ni, M., Bok, J.W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N.J., Keller, N.P., Yu, J.H., et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J.W. 2010. An overview of the genus Aspergillus, pp. 1–17. In Machida, M. and Gomi, K. (eds.). Aspergillus: Molecular Biology and Genomics.

    Google Scholar 

  • Beyhan, S., Gutierrez, M., Voorhies, M., and Sil, A. 2013. A temperature- responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 11, e1001614.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birnbaumer, L. 1990. G proteins in signal transduction. Ann. Rev. Pharmacol. Toxicol. 30, 675–705.

    Article  CAS  Google Scholar 

  • Birnbaumer, L. 2007. The discovery of signal transduction by G proteins: a personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim. Biophys. Acta 1768, 756–771.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bok, J.W., Balajee, S.A., Marr, K.A., Andes, D., Nielsen, K.F., Frisvad, J.C., and Keller, N.P. 2005. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot. Cell 4, 1574–1582.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boylan, M.T., Mirabito, P.M., Willett, C.E., Zimmerman, C.R., and Timberlake, W.E. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol. Cell. Biol. 7, 3113–3118.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Busby, T.M., Miller, K.Y., and Miller, B.L. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143, 155–163.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cai, Z.D., Chai, Y.F., Zhang, C.Y., Qiao, W.R., Sang, H., and Lu, L. 2015. The Gbeta-like protein CpcB is required for hyphal growth, conidiophore morphology and pathogenicity in Aspergillus fumigatus. Fungal Genet. Biol. 81, 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck, A.J. 1969. A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63, 317–327.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cramer, R.A.Jr., Perfect, B.Z., Pinchai, N., Park, S., Perlin, D.S., Asfaw, Y.G., Heitman, J., Perfect, J.R., and Steinbach, W.J. 2008. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot. Cell 7, 1085–1097.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cramer, R.A., Rivera, A., and Hohl, T.M. 2011. Immune responses against Aspergillus fumigatus: what have we learned? Curr. Opin. Infect. Dis. 24, 315–322.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cyert, M.S. 2003. Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311, 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  • Dagenais, T.R. and Keller, N.P. 2009. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dhingra, S., Andes, D., and Calvo, A.M. 2012. VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot. Cell 11, 1531–1543.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dolan, S.K., O’Keeffe, G., Jones, G.W., and Doyle, S. 2015. Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends Microbiol. 23, 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, P.S. and O’Gorman, C.M. 2012. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol. Rev. 36, 165–192.

    Article  PubMed  CAS  Google Scholar 

  • Ebbole, D.J. 2010. The Conidium, pp. 577–590. In Borkovich, K.A. and Ebbole, D.J. (eds.), Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC,USA.

    Chapter  Google Scholar 

  • Etxebeste, O., Garzia, A., Espeso, E.A., and Ugalde, U. 2010. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol. 18, 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Fortwendel, J.R., Fuller, K.K., Stephens, T.J., Bacon, W.C., Askew, D.S., and Rhodes, J.C. 2008. Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. Eukaryot. Cell 7, 1530–1539.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fortwendel, J.R., Panepinto, J.C., Seitz, A.E., Askew, D.S., and Rhodes, J.C. 2004. Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet. Biol. 41, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Fortwendel, J.R., Zhao, W., Bhabhra, R., Park, S., Perlin, D.S., Askew, D.S., and Rhodes, J.C. 2005. A fungus-specific ras homolog contributes to the hyphal growth and virulence of Aspergillus fumigatus. Eukaryot. Cell 4, 1982–1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gravelat, F.N., Ejzykowicz, D.E., Chiang, L.Y., Chabot, J.C., Urb, M., Macdonald, K.D., al-Bader, N., Filler, S.G., and Sheppard, D.C. 2010. Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cell. Microbiol. 12, 473–488.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grice, C.M., Bertuzzi, M., and Bignell, E.M. 2013. Receptor-mediated signaling in Aspergillus fumigatus. Front. Microbiol. 4, 26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grosse, C., Heinekamp, T., Kniemeyer, O., Gehrke, A., and Brakhage, A.A. 2008. Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus. Appl. Environ. Microbiol. 74, 4923–4933.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harnett, M.M. and Klaus, G.G. 1988. G protein regulation of receptor signalling. Immunol. Today 9, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Heitman, J., Carter, D.A., Dyer, P.S., and Soll, D.R. 2014. Sexual reproduction of human fungal pathogens. Cold Spring Harb. Perspect. Med. 4, pii: a019281.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, P.G., Chen, L., Nardone, J., and Rao, A. 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232.

    Article  PubMed  CAS  Google Scholar 

  • Hohl, T.M. and Feldmesser, M. 2007. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell 6, 1953–1963.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jahn, B., Langfelder, K., Schneider, U., Schindel, C., and Brakhage, A.A. 2002. PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages. Cell. Microbiol. 4, 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Juvvadi, P.R., Fortwendel, J.R., Pinchai, N., Perfect, B.Z., Heitman, J., and Steinbach, W.J. 2008. Calcineurin localizes to the hyphal septum in Aspergillus fumigatus: implications for septum formation and conidiophore development. Eukaryot. Cell 7, 1606–1610.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Juvvadi, P.R., Lamoth, F., and Steinbach, W.J. 2014. Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol. Rev. 28, 56–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Klee, C.B., Crouch, T.H., and Krinks, M.H. 1979. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76, 6270–6273.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kong, Q., Wang, L., Liu, Z., Kwon, N.J., Kim, S.C., and Yu, J.H. 2013. Gbeta-like CpcB plays a crucial role for growth and development of Aspergillus nidulans and Aspergillus fumigatus. PLoS One 8, e70355.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Krijgsheld, P., Bleichrodt, R., van Veluw, G.J., Wang, F., Muller, W.H., Dijksterhuis, J., and Wosten, H.A. 2013. Development in Aspergillus. Stud. Mycol. 74, 1–29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwon, N.J., Park, H.S., Jung, S., Kim, S.C., and Yu, J.H. 2012. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus. Eukaryot. Cell 11, 1399–1412.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwon, N.J., Shin, K.S., and Yu, J.H. 2010. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47, 981–993.

    Article  PubMed  CAS  Google Scholar 

  • Kwon-Chung, K.J. and Sugui, J.A. 2013. Aspergillus fumigatus–what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 9, e1003743.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lamoth, F., Juvvadi, P.R., Fortwendel, J.R., and Steinbach, W.J. 2012. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot. Cell 11, 1324–1332.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Latge, J.P. 1999. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Latge, J.P. 2001. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 9, 382–389.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Wright, S.J., Krystofova, S., Park, G., and Borkovich, K.A. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61, 423–452.

    Article  PubMed  CAS  Google Scholar 

  • Liebmann, B., Gattung, S., Jahn, B., and Brakhage, A.A. 2003. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol. Genet. Genomics 269, 420–435.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.J., Sasse, C., Gerke, J., Valerius, O., Irmer, H., Frauendorf, H., Heinekamp, T., Strassburger, M., Tran, V.T., Herzog, B., et al. 2015. Transcription factor soma is required for adhesion, development and virulence of the human pathogen Aspergillus fumigatus. PLoS Pathog. 11, e1005205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mah, J.H. and Yu, J.H. 2006. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot. Cell 5, 1585–1595.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McCormick, A., Loeffler, J., and Ebel, F. 2010. Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell. Microbiol. 12, 1535–1543.

    Article  PubMed  CAS  Google Scholar 

  • Mirabito, P.M., Adams, T.H., and Timberlake, W.E. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Ni, M., Gao, N., Kwon, N.J., Shin, K.S., and Yu, J.H. 2010. Regulation of Aspergillus conidiation, pp. 559–576. In Borkovich, K.A. and Ebbole, D.J. (eds.). Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, USA.

    Chapter  Google Scholar 

  • Ni, M. and Yu, J.H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2, e970.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Norton, T.S. and Fortwendel, J.R. 2014. Control of Ras-mediated signaling in Aspergillus fumigatus. Mycopathologia 178, 325–330.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Gorman, C.M., Fuller, H., and Dyer, P.S. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Panepinto, J.C., Oliver, B.G., Amlung, T.W., Askew, D.S., and Rhodes, J.C. 2002. Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal Genet. Biol. 36, 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Panepinto, J.C., Oliver, B.G., Fortwendel, J.R., Smith, D.L., Askew, D.S., and Rhodes, J.C. 2003. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of invasive pulmonary aspergillosis. Infect. Immun. 71, 2819–2826.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paris, S., Debeaupuis, J.P., Crameri, R., Carey, M., Charles, F., Prevost, M.C., Schmitt, C., Philippe, B., and Latge, J.P. 2003. Conidial hydrophobins of Aspergillus fumigatus. Appl. Environ. Microbiol. 69, 1581–1588.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park, H.S., Bayram, O., Braus, G.H., Kim, S.C., and Yu, J.H. 2012a. Characterization of the velvet regulators in Aspergillus fumigatus. Mol. Microbiol. 86, 937–953.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.S., Nam, T.Y., Han, K.H., Kim, S.C., and Yu, J.H. 2014. VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9, e89883.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park, H.S., Ni, M., Jeong, K.C., Kim, Y.H., and Yu, J.H. 2012b. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7, e45935.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park, H.S. and Yu, J.H. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15, 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Paul, M.J., Primavesi, L.F., Jhurreea, D., and Zhang, Y. 2008. Trehalose metabolism and signaling. Ann. Rev. Plant Biol. 59, 417–441.

    Article  CAS  Google Scholar 

  • Powers-Fletcher, M.V., Feng, X., Krishnan, K., and Askew, D.S. 2013. Deletion of the sec4 homolog srgA from Aspergillus fumigatus is associated with an impaired stress response, attenuated virulence and phenotypic heterogeneity. PLoS One 8, e66741.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Puttikamonkul, S., Willger, S.D., Grahl, N., Perfect, J.R., Movahed, N., Bothner, B., Park, S., Paderu, P., Perlin, D.S., and Cramer, R.A.Jr. 2010. Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol. Microbiol. 77, 891–911.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rojas, A.M., Fuentes, G., Rausell, A., and Valencia, A. 2012. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol. 196, 189–201.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rusnak, F. and Mertz, P. 2000. Calcineurin: form and function. Physiol. Rev. 80, 1483–1521.

    PubMed  CAS  Google Scholar 

  • Sewall, T.C., Mims, C.W., and Timberlake, W.E. 1990a. abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 2, 731–739.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sewall, T.C., Mims, C.W., and Timberlake, W.E. 1990b. Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev. Biol. 138, 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, D.C., Doedt, T., Chiang, L.Y., Kim, H.S., Chen, D., Nierman, W.C., and Filler, S.G. 2005. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol. Biol. Cell 16, 5866–5879.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shibasaki, F., Hallin, U., and Uchino, H. 2002. Calcineurin as a multifunctional regulator. J. Biochem. 131, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Shin, K.S., Kim, Y.H., and Yu, J.H. 2015. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus. Biochem. Biophys. Res. Commun. 463, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Shin, K.S., Kwon, N.J., and Yu, J.H. 2009. Gbetagamma-mediated growth and developmental control in Aspergillus fumigatus. Curr. Genet. 55, 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Simon, M.I., Strathmann, M.P., and Gautam, N. 1991. Diversity of G proteins in signal transduction. Science 252, 802–808.

    Article  PubMed  CAS  Google Scholar 

  • Soriani, F.M., Malavazi, I., da Silva Ferreira, M.E., Savoldi, M., Von Zeska Kress, M.R., de Souza Goldman, M.H., Loss, O., Bignell, E., and Goldman, G.H. 2008. Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol. Microbiol. 67, 1274–1291.

    Article  PubMed  CAS  Google Scholar 

  • Steinbach, W.J., Cramer, R.A.Jr., Perfect, B.Z., Asfaw, Y.G., Sauer, T.C., Najvar, L.K., Kirkpatrick, W.R., Patterson, T.F., Benjamin, D.K.Jr., Heitman, J., et al. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5, 1091–1103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steinbach, W.J., Reedy, J.L., Cramer, R.A.Jr., Perfect, J.R., and Heitman, J. 2007. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat. Rev. Microbiol. 5, 418–430.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, D.A., Moss, R.B., Kurup, V.P., Knutsen, A.P., Greenberger, P., Judson, M.A., Denning, D.W., Crameri, R., Brody, A.S., Light, M., et al. 2003. Allergic bronchopulmonary aspergillosis in cystic fibrosis–state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin. Infect. Dis. 37 Suppl 3, S225–264.

    Article  PubMed  Google Scholar 

  • Tao, L. and Yu, J.H. 2011. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology 157, 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Thau, N., Monod, M., Crestani, B., Rolland, C., Tronchin, G., Latge, J.P., and Paris, S. 1994. rodletless mutants of Aspergillus fumigatus. Infect. Immun. 62, 4380–4388.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tillie-Leblond, I. and Tonnel, A.B. 2005. Allergic bronchopulmonary aspergillosis. Allergy 60, 1004–1013.

    Article  PubMed  CAS  Google Scholar 

  • Timberlake, W.E. 1990. Molecular genetics of Aspergillus development. Annu. Rev. Genet. 24, 5–36.

    Article  PubMed  CAS  Google Scholar 

  • Twumasi-Boateng, K., Yu, Y., Chen, D., Gravelat, F.N., Nierman, W.C., and Sheppard, D.C. 2009. Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot. Cell 8, 104–115.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wieser, J., Lee, B.N., Fondon, J.3rd, and Adams, T.H. 1994. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr. Genet. 27, 62–69.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, P., Shin, K.S., Wang, T., and Yu, J.H. 2010. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryot. Cell 9, 1711–1723.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu, J.H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44, 145–154.

    PubMed  CAS  Google Scholar 

  • Yu, J.H. 2010. Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology 38, 229–237.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu, J.H., Mah, J.H., and Seo, J.A. 2006. Growth and developmental control in the model and pathogenic aspergilli. Eukaryot. Cell 5, 1577–1584.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyuk Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HS., Yu, JH. Developmental regulators in Aspergillus fumigatus . J Microbiol. 54, 223–231 (2016). https://doi.org/10.1007/s12275-016-5619-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5619-5

Keywords

Navigation