Abiko, Y., Jinbu, Y. Noguchi, T., Nishimura, M., Kusano, K., Amaratunga, P., Shibata, T., and Kaku, T. 2002. Upregulation of human beta-defensin 2 peptide expression in oral lichen planus, leukoplakia and candidiasis. An immunohistochemical study. Pathol. Res. Pr.
198, 537–542.
CAS
Article
Google Scholar
Adam, B., Baillie, G.S., and Douglas, L.J. 2002. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J. Med. Microbiol.
41, 344–349.
Article
Google Scholar
Akira, S., Uematsu, S., and Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell
124, 783–801.
PubMed
CAS
Article
Google Scholar
Akpan, A. and Morgan, R. 2002. Oral candidiasis. Postgr. Med. J.
78, 455–459.
CAS
Article
Google Scholar
Al-Fattani, M.A. and Douglas, L.J. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol.
55, 999–1008.
PubMed
CAS
Article
Google Scholar
Antonio, M.A.D., Hawes, S.E., and Hillier, S.L. 1999. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J. Infect. Dis.
180, 1950–1956.
PubMed
CAS
Article
Google Scholar
Baena-Monroy, T., Moreno-Maldonado, V., Franco-Martínez, F., Aldape-Barrios, B., Qindós, G., and Sánchez-Vargas, L. 2005. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med. Oral Patol. Oral Cir. Bucal.
10, 27–39.
Google Scholar
Bagg, J. and Silverwood, R.W. 1986. Coagglutination reactions between Candida albicans and oral bacteria. J. Med. Microbiol.
22, 165–169.
PubMed
CAS
Article
Google Scholar
Baillie, G.S. and Douglas, L.J. 1998. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob. Agents Chemother.
42, 1900–1905.
PubMed Central
PubMed
CAS
Google Scholar
Bamford, C.V., d’Mello, A., Nobbs, A.H., Dutton, L.C., Vickerman, M.M., and Jenkinson, H.F. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun.
77, 3696–3704.
PubMed Central
PubMed
CAS
Article
Google Scholar
Bates, S., de la Rosa, J.M., MacCallum, D.M., Brown, A.J.P., Gow, N.A.R., and Odds, F.C. 2007. Candida albicans Iff11, a secreted protein required for cell wall structure and virulence. Infect. Immun.
75, 2922–2928.
PubMed Central
PubMed
CAS
Article
Google Scholar
Bauernfeind, A., Hörl, G., Jungwirth, R., Petermüller, C., Przyklenk, B., Weisslein-Pfister, C., Bertele, R.M., and Harms, K. 1987. Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection
15, 270–277.
PubMed
CAS
Article
Google Scholar
Bellocchio, S., Montagnoli, C., Bozza, S., Gaziano, R., Rossi, G., Mambula, S.S., Vecchi, A., Mantovani, A., Levitz, S.M., and Romani, L. 2004. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol.
172, 3059–3069.
PubMed
CAS
Article
Google Scholar
Ben-Yaacov, R., Knoller, S., Caldwell, G.A., Becker, J.M., and Koltin, Y. 1994. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob. Agents Chemother.
38, 648–652.
PubMed Central
PubMed
CAS
Article
Google Scholar
Berman, J. and Sudbery, P.E. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet.
3, 918–930.
PubMed
CAS
Article
Google Scholar
Bink, A., Vandenbosch, D., Coenye, T., Nelis, H., Cammue, B.P.A., and Thevissen, K. 2011. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob. Agents Chemother.
55, 4033–4037.
PubMed Central
PubMed
CAS
Article
Google Scholar
Biswas, S., Van Dijck, P., and Datta, A. 2007. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev.
71, 348–376.
PubMed Central
PubMed
CAS
Article
Google Scholar
Blankenship, J.R. and Mitchell, A.P. 2006. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol.
9, 588–594.
PubMed
CAS
Article
Google Scholar
Bokor-Bratic, M., Cankovic, M., and Dragnic, N. 2013. Unstimulated whole salivary flow rate and anxiolytics intake are independently associated with oral Candida infection in patients with oral lichen planus. Eur. J. Oral Sci.
121, 427–433.
PubMed
Article
Google Scholar
Brodsky, I.E. and Monack, D. 2009. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin. Immunol.
21, 199–207.
PubMed
CAS
Article
Google Scholar
Brown, G.D. 2006. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol.
6, 33–43.
PubMed
CAS
Article
Google Scholar
Buffo, J., Herman, M.A., and Soll, D.R. 1984. A characterization of pH regulated dimorphism in Candida albicans. Mycopathologia
30, 21–30.
Article
Google Scholar
Calabrese, D., Bille, J., and Sanglard, D. 2000. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans FLU1) conferring resistance to fluconazole. Microbiol.
146, 2743–2754.
CAS
Article
Google Scholar
Calderone, R.A. and Clancy, C.J. 2012. Candida and Candidiasis, Second Edition. ASM Press. Washington, DC,USA.
Google Scholar
Cambi, A., Gijzen, K., de Vries, I.J.M., Torensma, R., Joosten, B., Adema, G.J., Netea, M.G., Kullberg, B.J., Romani, L., and Figdor, C.G. 2003. The C-type lectin DC-SIGN (CD209) is an antigenuptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol.
33, 532–538.
PubMed
CAS
Article
Google Scholar
Cambi, A., Netea, M.G., Mora-Montes, H.M., Gow, N.A.R., Hato, S.V, Lowman, D.W., Kullberg, B.J., Torensma, R., Williams, D.L., and Figdor, C.G. 2008. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem.
283, 20590–20599.
Article
CAS
Google Scholar
Carlson, E. 1983. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect. Immun.
39, 193–197.
PubMed Central
PubMed
CAS
Google Scholar
Carlson, E. and Johnson, G. 1985. Protection by Candida albicans of Staphylococcus aureus in the establishment of dual infection in mice. Infect. Immun.
50, 655–659.
PubMed Central
PubMed
CAS
Google Scholar
Cassat, J.E., Lee, C.Y., and Smeltzer, M.S. 2007. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus. Methods Mol. Biol.
391, 127–144.
PubMed Central
PubMed
CAS
Article
Google Scholar
Cassone, A. 2015. Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects. BJOG
122, 785–794.
PubMed
CAS
Article
Google Scholar
Chaffin, W.L. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev.
72, 495–544.
PubMed Central
PubMed
CAS
Article
Google Scholar
Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., and Ghannoum, M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol.
183, 5385–5394.
PubMed Central
PubMed
CAS
Article
Google Scholar
Chang, H.T., Tsai, P.W., Huang, H.H., Liu, Y.S., Chien, T.S., and Lan, C.Y. 2012. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Biochem. J.
441, 963–970.
PubMed
CAS
Article
Google Scholar
Chen, C.P., Posy, S., Ben-Shaul, A., Shapiro, L., and Honig, B.H. 2005. Specificity of cell-cell adhesion by classical cadherins: Critical role for low-affinity dimerization through β-strand swapping. Proc. Natl. Acad. Sci. USA.
102, 8531–8536.
PubMed Central
PubMed
CAS
Article
Google Scholar
Cheng, S.C., Joosten, L.A., Kullberg, B.J., and Netea, M.G. 2012. Interplay between Candida albicans and the mammalian innate host defense. Infect. Immun.
80, 1304–1313.
PubMed Central
PubMed
CAS
Article
Google Scholar
Cheng, S.C., van de Veerdonk, F.L., Lenardon, M., Stoffels, M., Plantinga, T., Smeekens, S., Rizzetto, L., Mukaremera, L., Preechasuth, K., Cavalieri, D., et al. 2011. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leukoc. Biol.
90, 357–366.
PubMed Central
PubMed
CAS
Article
Google Scholar
Cheng, S.C., van de Veerdonk, F., Smeekens, S., Joosten, L.A.B., van der Meer, J.W.M., Kullberg, B.J., and Netea, M.G. 2010. Candida albicans dampens host defense by downregulating IL-17 production. J. Immunol.
185, 2450–2457.
PubMed
CAS
Article
Google Scholar
Clemons, K. and Stevens, D. 2001. Overview of host defense mechanisms in systemic mycoses and the basis for immunotherapy. Semin. Respir. Infect.
16, 60–66.
PubMed
CAS
Article
Google Scholar
Colina, A.R., Aumont, F., Deslauriers, N., Belhumeur, P., and de Repentigny, L. 1996. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect. Immun.
64, 4514–4519.
PubMed Central
PubMed
CAS
Google Scholar
Conti, H.R. and Gaffen, S.L. 2010. Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect.
12, 518–527.
PubMed Central
PubMed
CAS
Article
Google Scholar
Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. 1995. Microbial biofilms. Annu. Rev. Microbiol.
49, 711–745.
PubMed
CAS
Article
Google Scholar
Cua, D.J. and Tato, C.M. 2010. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol
10, 479–489.
PubMed
CAS
Article
Google Scholar
Cugini, C., Calfee, M.W., Farrow, J.M., Morales, D.K., Pesci, E.C., and Hogan, D.A. 2007. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol. Microbiol.
65, 896–906.
PubMed
CAS
Article
Google Scholar
Dalle, F., Wächtler, B., L’Ollivier, C., Holland, G., Bannert, N., Wilson, D., Labruère, C., Bonnin, A., and Hube, B. 2010. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol.
12, 248–271.
PubMed
CAS
Article
Google Scholar
Davis-Hanna, A., Piispanen, A., Stateva, L., and Hogan, D. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1- cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol.
67, 47–62.
PubMed Central
PubMed
CAS
Article
Google Scholar
De Luca, A., Zelante, T., D’Angelo, C., Zagarella, S., Fallarino, F., Spreca, A., Iannitti, R.G., Bonifazi, P., Renauld, J.C., Bistoni, F., et al. 2010. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol.
3, 361–373.
PubMed
Article
CAS
Google Scholar
de Macedo, J.L.S. and Santos, J.B. 2005. Bacterial and fungal colonization of burn wounds. Memórias do Inst. Oswaldo Cruz
100, 535–539.
Article
Google Scholar
Dennerstein, G.J. and Ellis, D.H. 2001. Oestrogen, glycogen and vaginal candidiasis. Aust N Z J Obstet. Gynaecol.
41, 326–328.
PubMed
CAS
Article
Google Scholar
Doherty, G.J. and McMahon, H.T. 2009. Mechanisms of endocytosis. Annu. Rev. Biochem.
78, 857–902.
PubMed
CAS
Article
Google Scholar
Edgerton, M., Koshlukova, S.E., Lo, T.E., Chrzan, B.G., Straubinger, R.M., and Raj, P.A. 1998. Candidacidal activity of salivary histatins. J. Biol. Chem.
273, 20438–20447.
PubMed
CAS
Article
Google Scholar
Fanning, S. and Mitchell, A.P. 2012. Fungal biofilms. PLoS Pathog.
8, e1002585.
PubMed Central
PubMed
CAS
Article
Google Scholar
Fehrmann, C., Jurk, K., Bertling, A., Seidel, G., Fegeler, W., Kehrel, B.E., Peters, G., Becker, K., and Heilmann, C. 2013. Role for the fibrinogen-binding proteins coagulase and Efb in the Staphylococcus aureus–Candida interaction. Int. J. Med. Microbiol.
303, 230–238.
PubMed
CAS
Article
Google Scholar
Feller, L., Khammissa, R.A., Chandran, R., Altini, M., and Lemmer, J. 2014. Oral candidosis in relation to oral immunity. J. Oral Pathol. Med.
43, 563–569.
PubMed
CAS
Article
Google Scholar
Fernández-Arenas, E., Bleck, C.K.E., Nombela, C., Gil, C., Griffiths, G., and Diez-Orejas, R. 2009. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell. Microbiol.
11, 560–589.
PubMed
Article
CAS
Google Scholar
Fidel, P.L. 2007. History and update on host defense against vaginal candidiasis. Am. J. Reprod. Immunol.
57, 2–12.
PubMed
Article
Google Scholar
Fling, M., Kopf, J., Tamarkin, A., Gorman, J., Smith, H., and Koltin, Y. 1991. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol. Gen. Genet. MGG
227, 318–329.
PubMed
CAS
Article
Google Scholar
Foxman, B., Muraglia, R., Dietz, J., Sobel, J., and Wagner, J. 2013. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: results from an internet panel survey. J. Low Genit. Tract. Dis.
17, 340–345.
PubMed
Article
Google Scholar
Frank, C.F. and Hostetter, M.K. 2007. Cleavage of E-cadherin: a mechanism for disruption of the intestinal epithelial barrier by Candida albicans. Transl. Res.
149, 211–222.
PubMed
CAS
Article
Google Scholar
Frohner, I.E., Bourgeois, C., Yatsyk, K., Majer, O., and Kuchler, K. 2009. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol.
71, 240–252.
PubMed Central
PubMed
CAS
Article
Google Scholar
Gácser, A., Stehr, F., Kröger, C., Kredics, L., Schäfer, W., and Nosanchuk, J.D. 2007. Lipase 8 affects the pathogenesis of Candida albicans. Infect. Immun.
75, 4710–4718.
PubMed Central
PubMed
Article
CAS
Google Scholar
Gantner, B.N., Simmons, R.M., and Underhill, D.M. 2005. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J.
24, 1277–1286.
PubMed Central
PubMed
CAS
Article
Google Scholar
Garey, K.W., Rege, M., Pai, M.P., Mingo, D.E., Suda, K.J., Turpin, R.S., and Bearden, D.T. 2006. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multiinstitutional study. Clin. Infect. Dis.
77030, 25–31.
Article
Google Scholar
Gaur, N.K. and Klotz, S.A. 1997. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect. Immun.
65, 5289–5294.
PubMed Central
PubMed
CAS
Google Scholar
Geiger, J., Wessels, D., Lockhart, S.R., and Soll, D.R. 2004. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect. Immun.
72, 667–677.
PubMed Central
PubMed
CAS
Article
Google Scholar
Ghannoum, M.A. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev.
13, 122–143.
PubMed Central
PubMed
CAS
Article
Google Scholar
Ghosh, S., Navarathna, D.H.M.L.P., Roberts, D.D., Cooper, J.T., Atkin, A.L., Petro, T.M., and Nickerson, K.W. 2009. Arginineinduced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect. Immun.
77, 1596–1605.
PubMed Central
PubMed
CAS
Article
Google Scholar
Gibson, J., Sood, A., and Hogan, D.A. 2009. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol.
75, 504–513.
PubMed Central
PubMed
CAS
Article
Google Scholar
Gladiator, A., Wangler, N., Trautwein-Weidner, K., and Leibund-Gut-Landmann, S. 2013. Cutting edge: IL-17–secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol.
190, 521–525.
PubMed
CAS
Article
Google Scholar
Götz, F., Bannerman, T., and Schleifer, K.H. 2006. The Genera Staphylococcus and Macrococcus. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes SE-1, pp. 5–75. Springer, USA.
Chapter
Google Scholar
Gow, N. 1997. Germ tube growth of Candida albicans. Curr. Top. Med. Mycol.
8, 43–55.
PubMed
CAS
Google Scholar
Gow, N.A.R., Brown, A.J.P., and Odds, F.C. 2002. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol.
5, 366–371.
PubMed
CAS
Article
Google Scholar
Gow, N.A. and Hube, B. 2012. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol.
15, 406–412.
PubMed
CAS
Article
Google Scholar
Gow, N.A.R., Netea, M.G., Munro, C.A., Ferwerda, G., Bates, S., Mora-Montes, H.M., Walker, L., Jansen, T., Jacobs, L., Tsoni, V., et al. 2007. Immune recognition of Candida albicans β-glucan by dectin-1. J. Infect. Dis.
196, 1565–1571.
PubMed Central
PubMed
CAS
Article
Google Scholar
Gow, N., Perera, T., Sherwood-Higham, J., Gooday, G., Gregory, D., and Marshall, D. 1994. Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans. Scanning Microsc.
8, 705–710.
PubMed
CAS
Google Scholar
Gow, N.A., van de Veerdonk, F.L., Brown, A.J., and Netea, M.G. 2012. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol.
10, 112–122.
CAS
Google Scholar
Green, D.R. 2011. Means to an End: Apoptosis and Other Cell Death Mechanisms. Cold Spring Harbor Laboratory Press.
Google Scholar
Grimaudo, N.J., Nesbitt, W.E., and Clark, W.B. 1996. Coaggregation of Candida albicans oral Actinomyces species. Oral Microbiol. Immunol.
11, 59–61.
PubMed
CAS
Article
Google Scholar
Gropp, K., Schild, L., Schindler, S., Hube, B., Zipfel, P.F., and Skerka, C. 2009. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol.
47, 465–475.
PubMed
CAS
Article
Google Scholar
Guery, B.P., Arendrup, M.C., Auzinger, G., Azoulay, E., Borges Sá, M., Johnson, E.M., Müller, E., Putensen, C., Rotstein, C., Sganga, G., et al. 2009. Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: Part I. Epidemiology and diagnosis. Intensive Care Med.
35, 55–62.
PubMed
Article
Google Scholar
Hajjeh, R.A., Sofair, A.N., Harrison, L.H., Lyon, G.M., Arthingtonskaggs, B.A., Mirza, S.A., Phelan, M., Morgan, J., Lee-yang, W., Ciblak, M.A., et al. 2004. Incidence of bloodstream infections due to candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol.
42, 1519–1527.
PubMed Central
PubMed
Article
Google Scholar
Harriott, M.M. and Noverr, M.C. 2009. Candida albicans and Staphylococcus aureus Form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob. Agents Chemother.
53, 3914–3922.
PubMed Central
PubMed
CAS
Article
Google Scholar
Hebecker, B., Naglik, J.R., Hube, B., and Jacobsen, I.D. 2014. Pathogenicity mechanisms and host response during oral Candida albicans infections. Expert. Rev. Anti. Infect. Ther.
12, 867–879.
PubMed
CAS
Article
Google Scholar
Helmerhorst, E.J., Troxler, R.F., and Oppenheim, F.G. 2001. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc. Natl. Acad. Sci. USA
98, 14637–14642.
PubMed Central
PubMed
CAS
Article
Google Scholar
Hermann, C., Hermann, J., Munzel, U., and Rüchel, R. 1999. Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses
42, 619–627.
PubMed
CAS
Article
Google Scholar
Herre, J., Marshall, A.S.J., Caron, E., Edwards, A.D., Williams, D.L., Schweighoffer, E., Tybulewicz, V., Sousa, C.R.e, Gordon, S., and Brown, G.D. 2004. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood
104, 4038–4045.
PubMed
CAS
Article
Google Scholar
Hibino, K., Samaranayake, L.P., Hägg, U., Wong, R.W.K., and Lee, W. 2009. The role of salivary factors in persistent oral carriage of Candida in humans. Arch. Oral Biol.
54, 678–683.
PubMed
CAS
Article
Google Scholar
Hickey, D., Patel, M., Fahey, J., and Wira, C. 2011. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: stratification and integration of immune protection against the transmission of sexually transmitted infections. J. Reprod. Immunol.
88, 185–194.
PubMed Central
PubMed
CAS
Article
Google Scholar
Hickey, D.K., Fahey, J.V., and Wira, C.R. 2013. Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, a-/β-defensins and TLRs. Innate Immun.
19, 121–131.
PubMed Central
PubMed
Article
CAS
Google Scholar
Hiller, E., Zavrel, M., Hauser, N., Sohn, K., Burger-Kentischer, A., Lemuth, K., and Rupp, S. 2011. Adaptation, adhesion and invasion during interaction of Candida albicans with the host–focus on the function of cell wall proteins. Int. J. Med. Microbiol.
301, 384–389.
PubMed
CAS
Article
Google Scholar
Hogan, D.A. and Kolter, R. 2002. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science
296, 2229–2232.
PubMed
CAS
Article
Google Scholar
Hogan, D.A., Vik, Å., and Kolter, R. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol.
54, 1212–1223.
PubMed
CAS
Article
Google Scholar
Hollmig, S.T., Ariizumi, K., and Cruz, P.D. 2009. Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2. Glycobiology
19, 568–575.
PubMed Central
PubMed
CAS
Article
Google Scholar
Holmes, A.R., McNab, R., and Jenkinson, H.F. 1996. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect. Immun.
64, 4680–4685.
PubMed Central
PubMed
CAS
Google Scholar
Holmes, A.R., van der Wielen, P., Cannon, R.D., Ruske, D., and Dawes, P. 2006. Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
102, 488–494.
PubMed
Article
Google Scholar
Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol.
67, 2982–2992.
PubMed Central
PubMed
CAS
Article
Google Scholar
Hoyer, L.L. 2001. The ALS gene family of Candida albicans. Trends Microbiol.
9, 176–180.
PubMed
CAS
Article
Google Scholar
Hube, B., Stehr, F., Bossenz, M., Mazur, A., Kretschmar, M., and Schäfer, W. 2000. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch. Microbiol.
174, 362–374.
PubMed
CAS
Article
Google Scholar
Hughes, W. and Kim, H. 1973. Mycoflora in cystic fibrosis: Some ecologic aspects of Pseudomonas aeruginosa and Candida albicans. Mycopathol. Mycol. Appl.
50, 261–269.
PubMed
CAS
Article
Google Scholar
Ibata-Ombetta, S., Idziorek, T., Trinel, P.A., Poulain, D., and Jouault, T. 2003. Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J. Biol. Chem.
278, 13086–13093.
PubMed
CAS
Article
Google Scholar
Jacobsen, I.D., Wilson, D., Wächtler, B., Brunke, S., Naglik, J.R., and Hube, B. 2012. Candida albicans dimorphism as a therapeutic target. Expert. Rev. Anti. Infect. Ther.
10, 85–93.
PubMed
Article
Google Scholar
Jenkinson, H. and Douglas, L. 2002. Candida interactions with bacterial biofilms, pp. 357–373. In Brogden, K. and Guthmiller, J. (eds.), Polymicrobial Infections and Disease. ASM Press. Washington, DC, USA.
Chapter
Google Scholar
Jenkinson, H.F., Lala, H.C., and Shepherd, M.G. 1990. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect. Immun.
58, 1429–1436.
PubMed Central
PubMed
CAS
Google Scholar
Joly, S., Ma, N., Sadler, J.J., Soll, D.R., Cassel, S.L., and Sutterwala, F.S. 2009. Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol.
183, 3578–3581.
PubMed Central
PubMed
CAS
Article
Google Scholar
Kaksonen, M., Sun, Y., and Drubin, D.G. 2003. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell
115, 475–487.
PubMed
CAS
Article
Google Scholar
Kaminishi, H., Miyaguchi, H., Tamaki, T., Suenaga, N., Hisamatsu, M., Mihashi, I., Matsumoto, H., Maeda, H., and Hagihara, Y. 1995. Degradation of humoral host defense by Candida albicans proteinase. Infect. Immun.
63, 984–988.
PubMed Central
PubMed
CAS
Google Scholar
Kaneko, Y., Miyagawa, S., Takeda, O., Hakariya, M., Matsumoto, S., Ohno, H., and Miyazaki, Y. 2013. Real-time microscopic observation of candida biofilm development and effects due to micafungin and fluconazole. Antimicrob. Agents Chemother.
57, 2226–2230.
PubMed Central
PubMed
CAS
Article
Google Scholar
Káposzta, R., Tree, P., Maródi, L., and Gordon, S. 1998. Characteristics of invasive candidiasis in gamma interferon- and interleukin- 4-deficient mice: role of macrophages in host defense against Candida albicans. Infect. Immun.
66, 1708–1717.
PubMed Central
PubMed
Google Scholar
Kebaara, B.W., Langford, M.L., Navarathna, D.H.M.L.P., Dumitru, R., Nickerson, K.W., and Atkin, A.L. 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot. Cell
7, 980–987.
PubMed Central
PubMed
CAS
Article
Google Scholar
Khader, S., Gaffen, S., and Kolls, J. 2009. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol.
2, 403–411.
PubMed Central
PubMed
CAS
Article
Google Scholar
Klein, R.S., Harris, C.A., Small, C.B., Moll, B., Lesser, M., and Friedland, G.H. 1984. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med.
311, 354–358.
PubMed
CAS
Article
Google Scholar
Kojic, E.M. and Darouiche, R.O. 2004. Candida infections of medical devices. Clin. Microbiol. Rev.
17, 255–267.
PubMed Central
PubMed
Article
Google Scholar
Koshlukova, S.E., Araujo, M.W.B., Baev, D., and Edgerton, M. 2000. Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect. Immun.
68, 6848–6856.
PubMed Central
PubMed
CAS
Article
Google Scholar
Krishnakumari, V., Rangaraj, N., and Nagaraj, R. 2009. Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob. Agents Chemother.
53, 256–260.
PubMed Central
PubMed
CAS
Article
Google Scholar
Kumagai, Y., Takeuchi, O., and Akira, S. 2015. Pathogen recognition by innate receptors. J. Infect. Chemother.
14, 86–92.
Article
CAS
Google Scholar
Kumamoto, C.A. and Vinces, M.D. 2005. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol.
59, 113–133.
PubMed
CAS
Article
Google Scholar
Kumar, R., Chadha, S., Saraswat, D., Bajwa, J.S., Li, R.A., Conti, H.R., and Edgerton, M. 2011. Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J. Biol. Chem.
286, 43748–43758.
Google Scholar
Kunze, D., Melzer, I., Bennett, D., Sanglard, D., MacCallum, D., Nörskau, J., Coleman, D.C., Odds, F.C., Schäfer, W., and Hube, B. 2005. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology
151, 3381–3394.
PubMed
CAS
Article
Google Scholar
LaFleur, M.D., Kumamoto, C.A., and Lewis, K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother.
50, 3839–3846.
PubMed Central
PubMed
CAS
Article
Google Scholar
Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T., and Vandenabeele, P. 2006. Caspases in cell survival, proliferation and differentiation. Cell Death Differ.
14, 44–55.
PubMed
Article
CAS
Google Scholar
Leberer, E., Harcus, D., Broadbent, I., Clark, K., Dignard, D., Ziegelbauer, K., Schmidt, A., Gow, N., Brown, A., and Thomas, D. 1996. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA
93, 13217–13222.
PubMed Central
PubMed
CAS
Article
Google Scholar
Lehrer, R.I. and Ganz, T. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol.
11, 23–27.
PubMed
CAS
Article
Google Scholar
LeibundGut-Landmann, S., Grosz, O., Robinson, M.J., Osorio, F., Slack, E.C., Tsoni, S.V., Schweighoffer, E., Tybulewicz, V., Brown, G.D., Ruland, J., et al. 2007. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol.
8, 630–638.
PubMed
CAS
Article
Google Scholar
Leidich, S.D., Ibrahim, A.S., Fu, Y., Koul, A., Jessup, C., Vitullo, J., Fonzi, W., Mirbod, F., Nakashima, S., Nozawa, Y., et al. 1998. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J. Biol. Chem.
273, 26078–26086.
Article
Google Scholar
Lermann, U. and Morschhäuser, J. 2008. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology
154, 3281–3295.
PubMed
CAS
Article
Google Scholar
Lewis, K. 2010. Persister cells. Annu. Rev. Microbiol.
64, 357–372.
PubMed
CAS
Article
Google Scholar
Li, M., Chen, Q., Tang, R., Shen, Y., and Liu, W. 2011. The expression of beta-defensin-2,3 and LL-37 induced by Candida albicans phospholipomannan in human keratinocytes. J. Dermatol. Sci.
61, 72–75.
PubMed
CAS
Article
Google Scholar
Li, R., Kumar, R., Tati, S., Puri, S., and Edgerton, M. 2013. Candida albicans Flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. Antimicrob. Agents Chemother.
57, 1832–1839.
PubMed Central
PubMed
CAS
Article
Google Scholar
Li, F. and Palecek, S.P. 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell
2, 1266–1273.
PubMed Central
PubMed
CAS
Article
Google Scholar
Li, F. and Palecek, S.P. 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology
154, 1193–1203.
PubMed
CAS
Article
Google Scholar
Liu, H., Kohler, J., and Fink, G.R. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science
266, 1723–1726.
PubMed
CAS
Article
Google Scholar
Liu, L., Okada, S., Kong, X.F., Kreins, A.Y., Cypowyj, S., Abhyankar, A., Toubiana, J., Itan, Y., Audry, M., Nitschke, P., et al. 2011. Gainof-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med.
208, 1635–1648.
PubMed Central
PubMed
CAS
Article
Google Scholar
Loza, L., Fu, Y., Ibrahim, A.S., Sheppard, D.C., Filler, S.G., and Edwards, J.E. 2004. Functional analysis of the Candida albicans ALS1 gene product. Yeast
21, 473–482.
PubMed
CAS
Article
Google Scholar
Luo, S., Blom, A.M., Rupp, S., Hipler, U.C., Hube, B., Skerka, C., and Zipfel, P.F. 2011. The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion. J. Biol. Chem.
286, 8021–8029.
PubMed Central
PubMed
CAS
Article
Google Scholar
Luo, S., Hartmann, A., Dahse, H.M., Skerka, C., and Zipfel, P.F. 2010. Secreted pH-regulated antigen 1 of Candida albicans blocks activation and conversion of complement C3. J. Immunol.
185, 2164–2173.
PubMed
CAS
Article
Google Scholar
Luo, S., Poltermann, S., Kunert, A., Rupp, S., and Zipfel, P.F. 2009. Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol. Immunol.
47, 541–550.
PubMed
CAS
Article
Google Scholar
Luo, S., Skerka, C., Kurzai, O., and Zipfel, P.F. 2013. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans. Mol. Immunol.
56, 161–169.
PubMed
CAS
Article
Google Scholar
Marcil, A., Harcus, D., Thomas, D.Y., and Whiteway, M. 2002. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of candida genotype, infection ratios, and gamma interferon treatment. Infect. Immun.
70, 6319–6329.
PubMed Central
PubMed
CAS
Article
Google Scholar
Mardon, D., Balish, E., and Phillips, A. 1969. Control of dimorphism in a biochemical variant of Candida albicans. J. Bacteriol.
100, 701–707.
PubMed Central
PubMed
CAS
Google Scholar
Marger, M.D. and Saier Jr., M.H. 1993. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci.
18, 13–20.
PubMed
CAS
Article
Google Scholar
Maródi, L., Korchak, H.M., and Johnston, R.B. 1991. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J. Immunol.
146, 2783–2789.
PubMed
Google Scholar
Marr, K.A., Seidel, K., and White, T.C. 2000. Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J. Infect. Dis.
181, 309–316.
PubMed
CAS
Article
Google Scholar
Martinon, F. and Tschopp, J. 2004. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell
117, 561–574.
PubMed
CAS
Article
Google Scholar
Martinon, F., Mayor, A., and Tschopp, J. 2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol.
27, 229–265.
PubMed
CAS
Article
Google Scholar
Mayer, F.L., Wilson, D., and Hube, B. 2013. Candida albicans pathogenicity mechanisms. Virulence
4, 119–128.
PubMed Central
PubMed
Article
Google Scholar
Mayer, F.L., Wilson, D., Jacobsen, I.D., Miramón, P., Groβe, K., and Hube, B. 2012. The novel Candida albicans transporter Dur31 is a multi-stage pathogenicity factor. PLoS Pathog.
8, e1002592.
PubMed Central
PubMed
CAS
Article
Google Scholar
McCaig, L.F., McDonald, L.C., Mandal, S., and Jernigan, D.B. 2006. Staphylococcus aureus–associated skin and soft tissue infections in ambulatory care. Emerg. Infect. Dis. J.
12, 1715.
Article
Google Scholar
McGreal, E.P., Rosas, M., Brown, G.D., Zamze, S., Wong, S.Y.C., Gordon, S., Martinez-Pomares, L., and Taylor, P.R. 2006. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiol.
16, 422–430.
CAS
Article
Google Scholar
McKenzie, C.G.J., Koser, U., Lewis, L.E., Bain, J.M., Mora-Montes, H.M., Barker, R.N., Gow, N.A.R., and Erwig, L.P. 2010. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect. Immun.
78, 1650–1658.
PubMed Central
PubMed
CAS
Article
Google Scholar
McMahon, H.T. and Boucrot, E. 2011. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol.
12, 517–533.
PubMed
CAS
Article
Google Scholar
Meiller, T.F., Hube, B., Schild, L., Shirtliff, M.E., Scheper, M.A., Winkler, R., Ton, A., and Jabra-Rizk, M.A. 2009. A novel immune evasion strategy of Candida albicans: Proteolytic cleavage of a salivary antimicrobial peptide. PLoS One
4, e5039.
PubMed Central
PubMed
Article
CAS
Google Scholar
Merrifield, C.J., Feldman, M.E., Wan, L., and Almers, W. 2002. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol.
4, 691–698.
PubMed
CAS
Article
Google Scholar
Miceli, M.H., Díaz, J.A., and Lee, S.A. 2011. Emerging opportunistic yeast infections. Lancet Infect. Dis.
11, 142–151.
PubMed
Article
Google Scholar
Modrzewska, B. and Kurnatowski, P. 2015. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann. Parasitol.
61, 3–9.
PubMed
Google Scholar
Moore, K.W., O’Garra, A., Malefyt, R.W., Vieira, P., and Mosmann, T.R. 1993. Interleukin-10. Annu. Rev. Immunol.
11, 165–190.
PubMed
CAS
Article
Google Scholar
Morales, D.K., Jacobs, N.J., Rajamani, S., Krishnamurthy, M., Cubillos-Ruiz, J.R., and Hogan, D.a 2010. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol. Microbiol.
78, 1379–1392.
PubMed
CAS
Article
Google Scholar
Moreno-Ruiz, E., Galán-Díez, M., Zhu, W., Fernández-Ruiz, E., D’Enfert, C., Filler, S.G., Cossart, P., and Veiga, E. 2009. Candida albicans internalization by host cells is mediated by a clathrindependent mechanism. Cell. Microbiol.
11, 1179–1189.
PubMed Central
PubMed
CAS
Article
Google Scholar
Moyes, D.L., Murciano, C., Runglall, M., Islam, A., Thavaraj, S., and Naglik, J.R. 2011. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One
6, e26580.
PubMed Central
PubMed
CAS
Article
Google Scholar
Moyes, D.L., Murciano, C., Runglall, M., Kohli, A., Islam, A., and Naglik, J.R. 2012. Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med. Microbiol. Immunol.
201, 93–101.
PubMed Central
PubMed
CAS
Article
Google Scholar
Moyes, D.L., Richardson, J.P., and Naglik, J.R. 2015. Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence
6, 338–346.
PubMed Central
PubMed
CAS
Article
Google Scholar
Moyes, D.L., Runglall, M., Murciano, C., Shen, C., Nayar, D., Thavaraj, S., Kohli, A., Islam, A., Mora-Montes, H., Challacombe, S.J., et al. 2010. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe
8, 225–235.
PubMed Central
PubMed
CAS
Article
Google Scholar
Moyes, D.L., Shen, C., Murciano, C., Runglall, M., Richardson, J.P., Arno, M., Aldecoa-Otalora, E., and Naglik, J.R. 2014. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J. Infect. Dis.
209, 1816–1826.
PubMed Central
PubMed
CAS
Article
Google Scholar
Naglik, J.R. and Moyes, D. 2011. Epithelial cell innate response to Candida albicans. Adv. Dent. Res.
23, 50–55.
PubMed Central
PubMed
CAS
Article
Google Scholar
Naglik, J.R., Moyes, D., Makwana, J., Kanzaria, P., Tsichlaki, E., Weindl, G., Tappuni, A.R., Rodgers, C.a., Woodman, A.J., Challacombe, S.J., et al. 2008. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology
154, 3266–3280.
PubMed Central
PubMed
CAS
Article
Google Scholar
Naglik, J.R., Moyes, D.L., Wächtler, B., and Hube, B. 2011. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect.
13, 963–976.
PubMed Central
PubMed
CAS
Article
Google Scholar
Nair, N., Biswas, R., Götz, F., and Biswas, L. 2014. Impact of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infect. Immun.
82, 2162–2169.
PubMed Central
PubMed
Article
CAS
Google Scholar
Netea, M.G., Brown, G.D., Kullberg, B.J., and Gow, N.A.R. 2008. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol.
6, 67–78.
PubMed
CAS
Article
Google Scholar
Netea, M.G. and Maródi, L. 2010. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol.
31, 346–353.
PubMed
CAS
Article
Google Scholar
Netea, M.G., Sutmuller, R., Hermann, C., Van der Graaf, C.A.A., Van der Meer, J.W.M., van Krieken, J.H., Hartung, T., Adema, G., and Kullberg, B.J. 2004. Toll-Like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol.
172, 3712–3718.
PubMed
CAS
Article
Google Scholar
Nett, J.E., Crawford, K., Marchillo, K., and Andes, D.R. 2010. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob. Agents Chemother.
54, 3505–3508.
CAS
Article
Google Scholar
Nett, J.E., Lepak, A.J., Marchillo, K., and Andes, D.R. 2009. Time course global gene expression analysis of an in vivo Candida biofilm. J. Infect. Dis.
200, 307–313.
PubMed Central
PubMed
CAS
Article
Google Scholar
Nett, J., Lincoln, L., Marchillo, K., Massey, R., Holoyda, K., Hoff, B., VanHandel, M., and Andes, D. 2007. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother.
51, 510–520.
PubMed Central
PubMed
CAS
Article
Google Scholar
Niewerth, M. and Korting, H.C. 2001. Phospholipases of Candida albicans. Mycoses
44, 361–367.
PubMed
CAS
Article
Google Scholar
Nobile, C.J., Fox, E.P., Nett, J.E., Sorrells, T.R., Mitrovich, Q.M., Hernday, A.D., Tuch, B.B., Andes, D.R., and Johnson, A.D. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell
148, 126–138.
PubMed Central
PubMed
CAS
Article
Google Scholar
Nobile, C.J., Schneider, H.A., Nett, J.E., Sheppard, D.C., Filler, S.G., Andes, D.R., and Mitchell, A.P. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol.
18, 1017–1024.
PubMed Central
PubMed
CAS
Article
Google Scholar
Noverr, M.C. and Huffnagle, G.B. 2004. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun.
72, 6206–6210.
PubMed Central
PubMed
CAS
Article
Google Scholar
Odds, F.C. 1988. Candida and Candidosis. Baillière Tindall.
Google Scholar
Odds, F.C. 2008. Secreted proteinases and Candida albicans virulence. Microbiology
154, 3245–3246.
PubMed
CAS
Article
Google Scholar
Oever, J.T. and Netea, M.G. 2014. The bacteriome-mycobiome interaction and antifungal host defense. Eur. J. Immunol.
44, 3182–3191.
PubMed
Article
CAS
Google Scholar
Onishi, R.M. and Gaffen, S.L. 2010. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology
129, 311–321.
PubMed Central
PubMed
CAS
Article
Google Scholar
Otte, J.M., Zdebik, A.E., Brand, S., Chromik, A.M., Strauss, S., Schmitz, F., Steinstraesser, L., and Schmidt, W.E. 2009. Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity. Regul. Pept.
156, 104–117.
PubMed
CAS
Article
Google Scholar
Park, H., Myers, C.L., Sheppard, D.C., Phan, Q.T., Sanchez, A.A., E. Edwards, J., and Filler, S.G. 2005. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell. Microbiol.
7, 499–510.
PubMed
CAS
Article
Google Scholar
Peleg, A.Y., Tampakakis, E., Fuchs, B.B., Eliopoulos, G.M., Moellering, R.C., and Mylonakis, E. 2008. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA
105, 14585–14590.
PubMed Central
PubMed
CAS
Article
Google Scholar
Perlroth, J., Choi, B., and Spellberg, B. 2007. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol.
45, 321–346.
PubMed
Article
Google Scholar
Peschel, A. and Sahl, H.G. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol.
4, 529–536.
PubMed
CAS
Article
Google Scholar
Peters, B.M., Ovchinnikova, E.S., Krom, B.P., Schlecht, L.M., Zhou, H., Hoyer, L.L., Busscher, H.J., van der Mei, H.C., Jabra-Rizk, M.A., and Shirtliff, M.E. 2012. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology
158, 2975–2986.
PubMed Central
PubMed
CAS
Article
Google Scholar
Pfaller, M.A. and Diekema, D.J. 2010. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol.
36, 1–53.
PubMed
Article
Google Scholar
Phan, Q.T., Belanger, P.H., and Filler, S.G. 2000. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect. Immun.
68, 3485–3490.
PubMed Central
PubMed
CAS
Article
Google Scholar
Phan, Q.T., Fratti, R.A., Prasadarao, N.V., Edwards, J.E., and Filler, S.G. 2005. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J. Biol. Chem.
280, 10455–10461.
Article
CAS
Google Scholar
Phan, Q.T., Myers, C.L., Fu, Y., Sheppard, D.C., Yeaman, M.R., Welch, W.H., Ibrahim, A.S., Edwards, J.E., and Filler, S.G. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol.
5, e64.
PubMed Central
PubMed
Article
CAS
Google Scholar
Powell, B.L., Frey, C.L., and Drutz, D.J. 1984. Identification of a 17p-estradiol binding protein in Candida albicans and Candida (Torulopsis) glabrata. Exp. Mycol.
8, 304–313.
CAS
Article
Google Scholar
Prasad, R., De Wergifosse, P., Goffeau, A., and Balzi, E. 1995. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr. Genet.
27, 320–329.
PubMed
CAS
Article
Google Scholar
Puel, A., Cypowyj, S., Bustamante, J., Wright, J.F., Liu, L., Lim, H.K., Migaud, M., Israel, L., Chrabieh, M., Audry, M., et al. 2011. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science
332, 65–68.
PubMed Central
PubMed
CAS
Article
Google Scholar
Puel, A., Döffinger, R., Natividad, A., Chrabieh, M., Barcenas-Morales, G., Picard, C., Cobat, A., Ouachée-Chardin, M., Toulon, A., Bustamante, J., et al. 2010. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med.
207, 291–297.
PubMed Central
PubMed
CAS
Article
Google Scholar
Puri, S., Kumar, R., Chadha, S., Tati, S., Conti, H.R., Hube, B., Cullen, P.J., and Edgerton, M. 2012. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One
7, e46020.
PubMed Central
PubMed
CAS
Article
Google Scholar
Ramage, G., Bachmann, S., Patterson, T.F., Wickes, B.L., and López-Ribot, J.L. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother.
49, 973–980.
PubMed
CAS
Article
Google Scholar
Ramage, G., Martínez, J.P., and López-Ribot, J.L. 2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res.
6, 979–986.
PubMed
CAS
Article
Google Scholar
Ramage, G., Mowat, E., Jones, B., Williams, C., and Lopez-Ribot, J. 2009. Our current understanding of fungal biofilms. Crit. Rev. Microbiol.
35, 340–355.
PubMed
CAS
Article
Google Scholar
Rauceo, J.M., De Armond, R., Otoo, H., Kahn, P.C., Klotz, S.A., Gaur, N.K., and Lipke, P.N. 2006. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot. Cell
5, 1664–1673.
PubMed Central
PubMed
CAS
Article
Google Scholar
Ray, T.L. and Payne, C.D. 1988. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect. Immun.
56, 1942–1949.
PubMed Central
PubMed
CAS
Google Scholar
Re, F. and Strominger, J.L. 2001. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem.
276, 37692–37699.
PubMed
CAS
Article
Google Scholar
Rollenhagen, C., Wöllert, T., Langford, G.M., and Sundstrom, P. 2009. Stimulation of cell motility and expression of late markers of differentiation in human oral keratinocytes by Candida albicans. Cell. Microbiol.
11, 946–966.
PubMed
CAS
Article
Google Scholar
Rosentul, D.C., Plantinga, T.S., Oosting, M., Scott, W.K., Velez Edwards, D.R., Smith, P.B., Alexander, B.D., Yang, J.C., Laird, G.M., Joosten, L.A.B., et al. 2011. Genetic variation in the dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J. Infect. Dis.
204, 1138–1145.
PubMed Central
PubMed
CAS
Article
Google Scholar
Rotstein, D., Parodo, J., Taneja, R., and Marshall, J.C. 2000. Phagocytosis of Candida albicans induces apoptosis of human neutrophils. Shock
14, 278–283.
PubMed
CAS
Article
Google Scholar
Saijo, S., Ikeda, S., Yamabe, K., Kakuta, S., Ishigame, H., Akitsu, A., Fujikado, N., Kusaka, T., Kubo, S., Chung, S., et al. 2010. Dectin-2 recognition of a-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity
32, 681–691.
PubMed
CAS
Article
Google Scholar
Sallusto, F. and Lanzavecchia, A. 2002. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 4 Suppl 3, 127–1
Article
Google Scholar
Sandini, S., La Valle, R., De Bernardis, F., Macrì, C., and Cassone, A. 2007. The 65 kDa mannoprotein gene of Candida albicans encodes a putative β-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell. Microbiol.
9, 1223–1238.
PubMed
CAS
Article
Google Scholar
Sanglard, D. 2002. Resistance of human fungal pathogens to antifungal drugs. Curr. Opin. Microbiol.
5, 379–385.
PubMed
CAS
Article
Google Scholar
Sanglard, D., Ischer, F., Monod, M., and Bille, J. 1997. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology
143, 405–416.
PubMed
CAS
Article
Google Scholar
Sasse, C., Hasenberg, M., Weyler, M., Gunzer, M., and Morschhäuser, J. 2013. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot. Cell
12, 50–58.
PubMed Central
PubMed
CAS
Article
Google Scholar
Saville, S.P., Lazzell, A.L., Monteagudo, C., and Lopez-ribot, J.L. 2003. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell
2, 1053–1060.
PubMed Central
PubMed
CAS
Article
Google Scholar
Schaller, M., Mailhammer, R., Grassl, G., Sander, C.A., Hube, B., and Korting, H.C. 2002. Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J. Invest. Dermatol.
118, 652–657.
PubMed
CAS
Article
Google Scholar
Schaller, M., Borelli, C., Korting, H.C., and Hube, B. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses
48, 365–377.
PubMed
CAS
Article
Google Scholar
Schauber, J., Svanholm, C., Termén, S., Iffland, K., Menzel, T., Scheppach, W., Melcher, R., Agerberth, B., Lührs, H., and Gudmundsson, G.H. 2003. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut
52, 735–741.
PubMed Central
PubMed
CAS
Article
Google Scholar
Scherwitz, C. 1982. Ultrastructure of human cutaneous candidosis. J. Investig. Dermatol.
78, 200–205.
PubMed
CAS
Article
Google Scholar
Sealy, P.I., Garner, B., Swiatlo, E., Chapman, S.W., and Cleary, J.D. 2008. The interaction of mannose binding lectin (MBL) with mannose containing glycopeptides and the resultant potential impact on invasive fungal infection. Med. Mycol.
46, 531–539.
PubMed
CAS
Article
Google Scholar
Seider, K., Heyken, A., Lüttich, A., Miramón, P., and Hube, B. 2010. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr. Opin. Microbiol.
13, 392–400.
PubMed
CAS
Article
Google Scholar
Sheppard, D.C., Yeaman, M.R., Welch, W.H., Phan, Q.T., Fu, Y., Ibrahim, A.S., Filler, S.G., Zhang, M., Waring, A.J., and Edwards, J.E. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem.
279, 30480–30489.
PubMed
CAS
Article
Google Scholar
Shirtliff, M.E., Peters, B.M., and Jabra-Rizk, M.A. 2009. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett.
299, 1–8.
PubMed Central
PubMed
CAS
Article
Google Scholar
Simonetti, N., Strippoli, V., and Cassone, A. 1974. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature
250, 344–346.
PubMed
CAS
Article
Google Scholar
Smeekens, S.P., Plantinga, T.S., van de Veerdonk, F.L., Heinhuis, B., Hoischen, A., Joosten, L.A., Arkwright, P.D., Gennery, A., Kullberg, B.J., Veltman, J.A., et al. 2011. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS One
6, e29248.
PubMed Central
PubMed
CAS
Article
Google Scholar
Sobel, J.D. 1992. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin. Infect. Dis.
14, S148–153.
PubMed
Article
Google Scholar
Sobel, J.D. 2015. Recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. DOI: http://dx.doi.org/10.1016/j.ajog.2015.06.067
Google Scholar
Spellberg, B. 2008. Novel insights into disseminated candidiasis: pathogenesis research and clinical experience converge. PLoS Pathog.
4, e38.
PubMed Central
PubMed
Article
CAS
Google Scholar
Staab, J.F., Bahn, Y.S., Tai, C.H., Cook, P.F., and Sundstrom, P. 2004. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J. Biol. Chem.
279, 40737–40747.
Article
CAS
Google Scholar
Staab, J.F., Bradway, S.D., Fidel, P.L., and Sundstrom, P. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Sciences
283, 1535–1538.
CAS
Article
Google Scholar
Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. 1996. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J.
16, 1982–1991.
Article
Google Scholar
Strober, W. 2004. Epithelial cells pay a Toll for protection. Nat. Med.
10, 898–900.
PubMed
CAS
Article
Google Scholar
Sudbery, P.E. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol.
9, 737–748.
PubMed
CAS
Article
Google Scholar
Sullivan, J.M.O., Jenkinson, H.F., and Cannon, R.D. 2000. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology
146, 41–48.
Article
Google Scholar
Sun, J.N., Li, W., Jang, W.S., Nayyar, N., Sutton, M.D., and Edgerton, M. 2008. Uptake of the antifungal cationic peptide Histatin 5 by Candida albicans Ssa2p requires binding to non-conventional sites within the ATPase domain. Mol. Microbiol.
70, 1246–1260.
PubMed Central
PubMed
CAS
Article
Google Scholar
Sun, J.N., Solis, N.V., Phan, Q.T., Bajwa, J.S., Kashleva, H., Thompson, A., Liu, Y., Dongari-Bagtzoglou, A., Edgerton, M., and Filler, S.G. 2010. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog.
6, e1001181.
PubMed Central
PubMed
Article
CAS
Google Scholar
Sundstrom, P., Balish, E., and Allen, C.M. 2002. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J. Infect. Dis.
185, 521–530.
PubMed
CAS
Article
Google Scholar
Swidergall, M. and Ernst, J.F. 2014. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot. Cell
13, 950–957.
PubMed Central
PubMed
Article
CAS
Google Scholar
Swidergall, M., Ernst, A.M., and Ernst, J.F. 2013. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Antimicrob. Agents Chemother.
57, 3917–3922.
PubMed Central
PubMed
CAS
Article
Google Scholar
Szafranski-Schneider, E., Swidergall, M., Cottier, F., Tielker, D., Román, E., Pla, J., and Ernst, J.F. 2012. Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog.
8, e1002501.
PubMed Central
PubMed
CAS
Article
Google Scholar
Taff, H.T., Nett, J.E., Zarnowski, R., Ross, K.M., Sanchez, H., Cain, M.T., Hamaker, J., Mitchell, A.P., and Andes, D.R. 2012. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog.
8, e1002848.
PubMed Central
PubMed
CAS
Article
Google Scholar
Takesue, Y., Kakehashi, M., Ohge, H., Imamura, Y., Murakami, Y., Sasaki, M., Morifuji, M., Yokoyama, Y., Kouyama, M., Yokoyama, T., et al. 2004. Combined assessment of beta-D-glucan and degree of Candida colonization before starting empiric therapy for candidiasis in surgical patients. World J. Surg.
28, 625–630.
PubMed
Article
Google Scholar
Takezaki, S., Yamada, M., Kato, M., Park, M.J., Maruyama, K., Yamazaki, Y., Chida, N., Ohara, O., Kobayashi, I., and Ariga, T. 2012. Chronic mucocutaneous candidiasis caused by a gain-of-function mutation in the STAT1 DNA-binding domain. J. Immunol.
189, 1521–1526.
PubMed
CAS
Article
Google Scholar
Taschdjian, C., Burchall, J., and Kozinn, P. 1960. Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA. J. Dis. Child.
99, 212–215.
PubMed
CAS
Google Scholar
Tsai, P.W., Yang, C.Y., Chang, H.T., and Lan, C.Y. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One
6, e17755.
PubMed Central
PubMed
CAS
Article
Google Scholar
Underhill, D.M. and Iliev, I.D. 2014. The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol.
14, 405–416.
PubMed Central
PubMed
CAS
Article
Google Scholar
Uppuluri, P., Chaturvedi, A.K., Srinivasan, A., Banerjee, M., Ramasubramaniam, A.K., Köhler, J.R., Kadosh, D., and Lopez-Ribot, J.L. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog.
6, e1000828.
PubMed Central
PubMed
Article
CAS
Google Scholar
Urban, C.F., Reichard, U., Brinkmann, V., and Zychlinsky, A. 2006. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol.
8, 668–676.
PubMed
CAS
Article
Google Scholar
Urban, C.F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., Brinkmann, V., Jungblut, P.R., and Zychlinsky, A. 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog.
5, e1000639.
PubMed Central
PubMed
Article
CAS
Google Scholar
Van’t Wout, J.W., Linde, I., Leijh, P.C.J., and van Furth, R. 1988. Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur. J. Clin. Microbiol. Infect. Dis.
7, 736–741.
Article
Google Scholar
Van de Veerdonk, F.L. and Joosten, L.A.B. 2015. The interplay between inflammasome activation and antifungal host defense. Immunol. Rev.
265, 172–180.
PubMed
Article
CAS
Google Scholar
Van de Veerdonk, F.L., Kullberg, B.J., and Netea, M.G. 2010. Pathogenesis of invasive candidiasis. Curr. Opin. Crit. Care
16, 453–459.
PubMed
Article
Google Scholar
Van de Veerdonk, F.L., Plantinga, T., Hoischen, A., Smeekens, S., Joosten, L., Gilissen, C., Arts, P., Rosentul, D., Carmichael, A., Smits-van der Graaf, C., et al. 2011. STAT1 Mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl. J. Med.
365, 54–61.
PubMed
Article
Google Scholar
Van der Meer, J.W., van de Veerdonk, F.L., Joosten, L.A., Kullberg, B.J., and Netea, M.G. 2010. Severe Candida spp. infections: new insights into natural immunity. Int. J. Antimicrob. Agents 36 Suppl 2, S58–62.
Article
CAS
Google Scholar
Verma, S. and Hefferman, M. 2008. Superficial fungal infection: dermatophytosis, onychomytosis, tinea nigra, piedra, pp. 1807–1821. In Wolff, K., Goldsmith, L., Katz, S., Gilchrest, B., Paller, A.S., and Leffell, D.J. (eds.). Fitzpatrick’s Dermatology in General Medicine. McGraw-Hill, New York, USA.
Google Scholar
Villar, C., Chukwuedum Aniemeke, J., Zhao, X.R., and Huynh-Ba, G. 2012. Induction of apoptosis in oral epithelial cells by Candida albicans. Mol. Oral Microbiol.
27, 436–448.
PubMed
CAS
Article
Google Scholar
Villar, C.C., Kashleva, H., Nobile, C.J., Mitchell, A.P., and Dongari-Bagtzoglou, A. 2007. Mucosal tissue invasion by Candida albicans is associated with e-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun.
75, 2126–2135.
PubMed Central
PubMed
CAS
Article
Google Scholar
Villar, C.C. and Zhao, X.R. 2010. Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells. Mol. Oral Microbiol.
25, 215–225.
PubMed
CAS
Article
Google Scholar
Villena, J., Salva, S., Agüero, G., and Alvarez, S. 2011. Immunomodulatory and protective effect of probiotic Lactobacillus casei against Candida albicans infection in malnourished mice. Microbiol. Immunol.
55, 434–445.
PubMed
CAS
Article
Google Scholar
Vylkova, S., Carman, A.J., Danhof, H.A., Collette, J.R., Zhou, H., and Lorenz, M.C. 2011. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio
2, 1–12.
Article
CAS
Google Scholar
Wächtler, B., Citiulo, F., Jablonowski, N., Förster, S., Dalle, F., Schaller, M., Wilson, D., and Hube, B. 2012. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One
7, e36952.
PubMed Central
PubMed
Article
CAS
Google Scholar
Wächtler, B., Wilson, D., Haedicke, K., Dalle, F., and Hube, B. 2011. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One
6, e17046
PubMed Central
PubMed
Article
CAS
Google Scholar
Wagener, J., Weindl, G., de Groot, P.W.J., de Boer, A.D., Kaesler, S., Thavaraj, S., Bader, O., Mailänder-Sanchez, D., Borelli, C., Weig, M., et al. 2012. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One
7, e50518.
PubMed Central
PubMed
CAS
Article
Google Scholar
Weindl, G., Naglik, J.R., Kaesler, S., Biedermann, T., Hube, B., Korting, H.C., and Schaller, M. 2007. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Invest.
117, 3664–3672.
PubMed Central
PubMed
CAS
Google Scholar
Weindl, G., Wagener, J., and Schaller, M. 2010. Epithelial cells and innate antifungal defense. J. Dent. Res.
89, 666–675.
PubMed Central
PubMed
CAS
Article
Google Scholar
Weindl, G., Wagener, J., and Schaller, M. 2011. Interaction of the mucosal barrier with accessory immune cells during fungal infection. Int. J. Med. Microbiol.
301, 431–435.
PubMed
CAS
Article
Google Scholar
Wheeler, R.T., Kombe, D., Agarwala, S.D., and Fink, G.R. 2008. Dynamic, morphotype-specific Candida albicans β-Glucan exposure during infection and drug treatment. PLoS Pathog.
4, e1000227.
PubMed Central
PubMed
Article
CAS
Google Scholar
White, T.C. 1997. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother.
41, 1482–1487.
PubMed Central
PubMed
CAS
Google Scholar
White, S., Larsen, B., and Virginia, H.W. 1997. Candida albicans morphogenesis is influenced by estrogen. Cell Mol. Life Sci.
53, 744–749.
PubMed
CAS
Article
Google Scholar
Williams, P. and Cámara, M. 2009. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol.
12, 182–191.
PubMed
CAS
Article
Google Scholar
Williams, D.W., Jordan, R.P., Wei, X.Q., Alves, C.T., Wise, M.P., Wilson, M.J., and Lewis, M.A. 2013. Interactions of Candida albicans with host epithelial surfaces. J. Oral Microbiol.
5. doi: 10.3402/jom.v5i0.22434.
Google Scholar
Willment, J.A. and Brown, G.D. 2008. C-type lectin receptors in antifungal immunity. Trends Microbiol.
16, 27–32.
PubMed
CAS
Article
Google Scholar
Xie, Z., Thompson, A., Sobue, T., Kashleva, H., Xu, H., Vasilakos, J., and Dongari-Bagtzoglou, A. 2012. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J. Infect. Dis.
206, 1936–1945.
PubMed Central
PubMed
CAS
Article
Google Scholar
Yan, L., Yang, C., and Tang, J. 2013. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol. Res.
168, 389–395.
PubMed
CAS
Article
Google Scholar
Yang, W., Yan, L., Wu, C., Zhao, X., and Tang, J. 2014. Fungal invasion of epithelial cells. Microbiol. Res.
169, 803–810.
PubMed
CAS
Article
Google Scholar
Yano, J., Lilly, E., Barousse, M., and Fidel, P.L. 2010. Epithelial cellderived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun.
78, 5126–5137.
PubMed Central
PubMed
CAS
Article
Google Scholar
Yarar, D., Waterman-Storer, C.M., and Schmid, S.L. 2005. A dynamic actin cytoskeleton functions at multiple stages of clathrinmediated endocytosis. Mol. Biol. Cell
16, 964–975.
PubMed Central
PubMed
CAS
Article
Google Scholar
Ye, P., Rodriguez, F.H., Kanaly, S., Stocking, K.L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., et al. 2001. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.
194, 519–527.
PubMed Central
PubMed
CAS
Article
Google Scholar
Zakikhany, K., Naglik, J.R., Schmidt-Westhausen, A., Holland, G., Schaller, M., and Hube, B. 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol.
9, 2938–2954.
PubMed
CAS
Article
Google Scholar
Zelante, T., Iannitti, R.G., Cunha, C., De Luca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity
39, 372–385.
PubMed
CAS
Article
Google Scholar
Zhang, M.X., Lupan, D.M., and Kozel, T.R. 1997. Mannan-specific immunoglobulin G antibodies in normal human serum mediate classical pathway initiation of C3 binding to Candida albicans. Infect. Immun.
65, 3822–3827.
PubMed Central
PubMed
CAS
Google Scholar
Zhang, M.X. and Kozel, T.R. 1998. Mannan-specific immunoglobuling antibodies in normal human serum accelerate binding of C3 to Candida albicans via the alternative complement pathway. Infect. Immun.
66, 4845–4850.
PubMed Central
PubMed
CAS
Google Scholar
Zhao, X., Oh, S.H., Cheng, G., Green, C., Nuessen, J., Yeater, K., Leng, R., Brown, A., and Hoyer, L. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology
150, 2415–2428.
PubMed
CAS
Article
Google Scholar
Zhao, X., Oh, S.H., Yeater, K.M., and Hoyer, L.L. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology
151, 1619–1630.
PubMed Central
PubMed
CAS
Article
Google Scholar
Zhu, W. and Filler, S.G. 2010. Interactions of Candida albicans with epithelial cells. Cell. Microbiol.
12, 273–282.
PubMed Central
PubMed
CAS
Article
Google Scholar
Zhu, W., Phan, Q.T., Boontheung, P., Solis, N.V., Loo, J.A., and Filler, S.G. 2012. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc. Natl. Acad. Sci. USA
109, 14194–14199.
PubMed Central
PubMed
CAS
Article
Google Scholar
Zipfel, P.F., Skerka, C., Kupka, D., and Luo, S. 2011. Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int. J. Med. Microbiol.
301, 423–430.
PubMed
CAS
Article
Google Scholar