Skip to main content

Advertisement

Log in

Characterization of the rapamycin-inducible EBV LMP1 activation system

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) is required for EBV-mediated B lymphocyte transformation into proliferating lymphoblastoid cell lines (LCL). LMP1 oligomerizes spontaneously in membrane lipid rafts via its transmembrane domain and constitutively activates signal transduction pathways, including NF-κB, p38 Mitogen-Activated Protein Kinase (MAPK), and c-Jun N-terminal Kinase (JNK). Since LMP1 mimics the tumor necrosis factor receptor (TNFR), CD40, it may be effectively utilized to study the effects of constitutive activation of signal transduction pathways on cellular physiology. On the other hand, LMP1 presents a disadvantage in terms of determining the sequential events and factors involved in signaling pathways. A CD40-LMP1 chimeric molecule has been generated to overcome this limitation but does not represent the authentic and physiological nature of LMP1. In the current study, a ligand-dependent activation system for LMP1 using rapamycin-inducible dimerization was generated to delineate the LMP1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, D.J., Crabtree, G.R., and Schreiber, S.L. 1994. Proximity versus allostery: the role of regulated protein dimerization in biology. Chem. Biol. 1, 131–136.

    Article  CAS  PubMed  Google Scholar 

  • Banaszynski, L.A., Liu, C.W., and Wandless, T.J. 2005. Characterization of the FKBP center dot Rapamycin center dot FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721.

    Article  CAS  PubMed  Google Scholar 

  • Bari, W., Song, Y.J., and Yoon, S.S. 2011. Suppressed induction of proinflammatory cytokines by a unique metabolite produced by Vibrio cholerae O1 El Tor biotype in cultured host cells. Infect. Immun. 79, 3149–3158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bierer, B.E., Mattila, P.S., Standaert, R.F., Herzenberg, L.A., Burakoff, S.J., Crabtree, G., and Schreiber, S.L. 1990. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc. Natl. Acad. Sci. USA 87, 9231–9235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S., and Schreiber, S.L. 1994. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758.

    Article  CAS  PubMed  Google Scholar 

  • Brown, K.D., Hostager, B.S., and Bishop, G.A. 2001. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J. Exp. Med. 193, 943–954.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, J., Zheng, X.F., Brown, E.J., and Schreiber, S.L. 1995. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci. USA 92, 4947–4951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu, M.I., Katz, H., and Berlin, V. 1994. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl. Acad. Sci. USA 91, 12574–12578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemons, P.A. 1999. Design and discovery of protein dimerizers. Curr. Opin. Chem. Biol. 3, 112–115.

    Article  CAS  PubMed  Google Scholar 

  • DeRose, R., Miyamoto, T., and Inoue, T. 2013. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch. 465, 409–417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devergne, O., Hatzivassiliou, E., Izumi, K.M., Kaye, K.M., Kleijnen, M.F., Kieff, E., and Mosialos, G. 1996. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol. Cell. Biol. 16, 7098–7108.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fennewald, S., van Santen, V., and Kieff, E. 1984. Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J. Virol. 51, 411–419.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gewurz, B.E., Mar, J.C., Padi, M., Zhao, B., Shinners, N.P., Takasaki, K., Bedoya, E., Zou, J.Y., Cahir-McFarland, E., Quackenbush, J., et al. 2011. Canonical NF-kappaB activation is essential for Epstein-Barr virus latent membrane protein 1 TES2/CTAR2 gene regulation. J. Virol. 85, 6764–6773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gires, O., ZimberStrobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D., and Hammerschmidt, W. 1997. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 16, 6131–6140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grywalska, E. and Rolinski, J. 2015. Epstein-Barr virus-associated lymphomas. Semin. Oncol. 42, 291–303.

    Article  PubMed  Google Scholar 

  • Hay, N. and Sonenberg, N. 2004. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • Hayden, M.S. and Ghosh, S. 2012. NF-kappaB, the first quartercentury: remarkable progress and outstanding questions. Genes Dev. 26, 203–234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hennessy, K., Fennewald, S., Hummel, M., Cole, T., and Kieff, E. 1984. A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proc. Natl. Acad. Sci. USA 81, 7207–7211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, S.L., Bjornsti, M.A., and Houghton, P.J. 2003. Rapamycins - Mechanism of action and cellular resistance. Cancer Biol. Ther. 2, 222–232.

    Article  CAS  PubMed  Google Scholar 

  • Izumi, K.M. 2001. Identification of EBV transforming genes by recombinant EBV technology. Semin. Cancer Biol. 11, 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Izumi, K.M., Cahir McFarland, E.D., Riley, E.A., Rizzo, D., Chen, Y., and Kieff, E. 1999a. The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J. Virol. 73, 9908–9916.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi, K.M., Cahir McFarland, E.D., Ting, A.T., Riley, E.A., Seed, B., and Kieff, E.D. 1999b. The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol. Cell Biol. 19, 5759–5767.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi, K.M., Kaye, K.M., and Kieff, E.D. 1997. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc. Natl. Acad. Sci. USA 94, 1447–1452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi, K.M. and Kieff, E.D. 1997. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NFkappaB. Proc. Natl. Acad. Sci. USA 94, 12592–12597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaye, K.M., Izumi, K.M., and Kieff, E. 1993. Epstein-Barr virus latent membrane protein-1 is essential for B-lymphocyte growth transformation. Proc. Natl. Acad. Sci. USA 90, 9150–9154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lam, N. and Sugden, B. 2003a. CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Lam, N. and Sugden, B. 2003b. LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments. EMBO J. 22, 3027–3038.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambert, S.L. and Martinez, O.M. 2007. Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J. Immunol. 179, 8225–8234.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H.P., Wu, C.C., and Chang, Y.S. 2006. PRA1 promotes the intracellular trafficking and NF-kappaB signaling of EBV latent membrane protein 1. EMBO J. 25, 4120–4130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C., and Kieff, E. 1995. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Muthuswamy, S.K., Gilman, M., and Brugge, J.S. 1999. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell Biol. 19, 6845–6857.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oeckinghaus, A., Hayden, M.S., and Ghosh, S. 2011. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695–708.

    Article  CAS  PubMed  Google Scholar 

  • Pollock, R. and Clackson, T. 2002. Dimerizer-regulated gene expression. Curr. Opin. Biotechnol. 13, 459–467.

    Article  CAS  PubMed  Google Scholar 

  • Rastelli, J., Homig-Holzel, C., Seagal, J., Muller, W., Hermann, A.C., Rajewsky, K., and Zimber-Strobl, U. 2008. LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood 111, 1448–1455.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P., and Snyder, S.H. 1994. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Saito, S., Murata, T., Kanda, T., Isomura, H., Narita, Y., Sugimoto, A., Kawashima, D., and Tsurumi, T. 2013. Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-kappaB signaling during productive replication. J. Virol. 87, 4060–4070.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siekierka, J.J., Hung, S.H., Poe, M., Lin, C.S., and Sigal, N.H. 1989. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341, 755–757.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y.J., Izumi, K.M., Shinners, N.P., Gewurz, B.E., and Kieff, E. 2008. IRF7 activation by Epstein-Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3. Proc. Natl. Acad. Sci. USA 105, 18448–18453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spencer, D.M. 1996. Creating conditional mutations in mammals. Trends Genet. 12, 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Thorley-Lawson, D.A. 2001. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Donahoe, P.K., and Zervos, A.S. 1994. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265, 674–676.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Jae Song.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Kim, JE., Won, J. et al. Characterization of the rapamycin-inducible EBV LMP1 activation system. J Microbiol. 53, 732–738 (2015). https://doi.org/10.1007/s12275-015-5455-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5455-z

Keywords

Navigation