Abstract
Bacterial cells respond to changes in the environment by adjusting their physiological reactions. In cascades of cellular responses to stresses of various origins, rapid modulation of RNA function is known to be an effective biochemical adaptation. Among many factors affecting RNA function, RNase III, a member of the phylogenetically highly conserved endoribonuclease III family, plays a key role in posttranscriptional regulatory pathways in Escherichia coli. In this review, we provide an overview of the factors affecting RNase III activity in E. coli.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amarasinghe, A.K., Calin-Jageman, I., Harmouch, A., Sun, W., and Nicholson, A.W. 2001. Escherichia coli ribonuclease III: affinity purification of hexahistidine-tagged enzyme and assays for substrate binding and cleavage. Methods Enzymol. 342, 143–158.
Bardwell, J.C., Regnier, P., Chen, S.M., Nakamura, Y., Grunberg-Manago, M., and Court, D.L. 1989. Autoregulation of RNase III operon by mRNA processing. EMBO J. 8, 3401–3407.
Blaszczyk, J., Gan, J., Tropea, J.E., Court, D.L., Waugh, D.S., and Ji, X. 2004. Noncatalytic assembly of ribonuclease III with doublestranded RNA. Structure 12, 457–466.
Blaszczyk, J., Tropea, J.E., Bubunenko, M., Routzahn, K.M., Waugh, D.S., Court, D.L., and Ji, X. 2001. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9, 1225–1236.
Bossemeyer, D., Borchard, A., Dosch, D.C., Helmer, G.C., Epstein, W., Booth, I.R., and Bakker, E.P. 1989. K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. J. Biol. Chem. 264, 16403–16410.
Bram, R.J., Young, R.A., and Steitz, J.A. 1980. The ribonuclease III site flanking 23S sequences in the 30S ribosomal precursor RNA of E. coli. Cell 19, 393–401.
Britton, R.A., Powell, B.S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J.R., and Court, D.L. 1998. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol. Microbiol. 27, 739–750.
Cairney, J., Booth, I.R., and Higgins, C.F. 1985. Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J. Bacteriol. 164, 1224–1232.
Campbell, F.E. Jr., Cassano, A.G., Anderson, V.E., and Harris, M.E. 2002. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J. Mol. Biol. 317, 21–40.
Chen, C. and Deutscher, M.P. 2005. Elevation of RNase R in response to multiple stress conditions. J. Biol. Chem. 280, 34393–34396.
Court, D.L., Gan, J., Liang, Y.H., Shaw, G.X., Tropea, J.E., Costantino, N., Waugh, D.S., and Ji, X. 2013. RNase III: Genetics and function; structure and mechanism. Annu. Rev. Genet. 47, 405–431.
Diethmaier, C., Newman, J.A., Kovacs, A.T., Kaever, V., Herzberg, C., Rodrigues, C., Boonstra, M., Kuipers, O.P., Lewis, R.J., and Stulke, J. 2014. The YmdB phosphodiesterase is a global regulator of late adaptive responses in Bacillus subtilis. J. Bacteriol. 196, 265–275.
Filippov, V., Solovyev, V., Filippova, M., and Gill, S.S. 2000. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221.
Freire, P., Amaral, J.D., Santos, J.M., and Arraiano, C.M. 2006. Adaptation to carbon starvation: RNase III ensures normal expression levels of bolA1p mRNA and sigma(S). Biochimie 88, 341–346.
Gan, J., Shaw, G., Tropea, J.E., Waugh, D.S., Court, D.L., and Ji, X. 2008. A stepwise model for double-stranded RNA processing by ribonuclease III. Mol. Microbiol. 67, 143–154.
Gan, J., Tropea, J.E., Austin, B.P., Court, D.L., Waugh, D.S., and Ji, X. 2006. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124, 355–366.
Georgellis, D., Barlow, T., Arvidson, S., and von Gabain, A. 1993. Retarded RNA turnover in Escherichia coli: a means of maintaining gene expression during anaerobiosis. Mol. Microbiol. 9, 375–381.
Gottesman, S., Trisler, P., and Torres-Cabassa, A. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162, 1111–1119.
Gurevitz, M. and Apirion, D. 1983. Interplay among processing and degradative enzymes and a precursor ribonucleic acid in the selective maturation and maintenance of ribonucleic acid molecules. Biochemistry 22, 4000–4005.
Ji, X. 2008. The mechanism of RNase III action: how dicer dices. Curr. Top. Microbiol. Immunol. 320, 99–116.
Kavalchuk, K., Madhusudan, S., and Schnetz, K. 2012. RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli. RNA Biol. 9, 98–109.
Kennelly, P.J. and Potts, M. 1996. Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J. Bacteriol. 178, 4759–4764.
Kim, J.S., Kim, Y.J., Seo, S., Seong, M.J., and Lee, K. 2015. Functional role of bdm during flagella biogenesis in Escherichia coli. Curr. Microbiol. 70, 369–373.
Kim, K.S., Manasherob, R., and Cohen, S.N. 2008. YmdB: a stressresponsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev. 22, 3497–3508.
Kim, K., Sim, S.H., Jeon, C.O., Lee, Y., and Lee, K. 2011. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III. FEMS Microbiol. Lett. 315, 30–37.
Laimins, L.A., Rhoads, D.B., and Epstein, W. 1981. Osmotic control of kdp operon expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 78, 464–468.
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.
Lee, J.J., Lee, G., and Shin, J.H. 2014. s(B) affects biofilm formation under the dual stress conditions imposed by adding salt and low temperature in Listeria monocytogenes. J. Microbiol. 52, 849–855.
Li, L., Zhu, J., Yang, K., Xu, Z., Liu, Z., and Zhou, R. 2014. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation. J. Microbiol. 52, 473–481.
Lim, B., Ahn, S., Sim, M., and Lee, K. 2013. RNase III controls mltD mRNA degradation in Escherichia coli. Curr. Microbiol. 68, 518–523.
Lim, B. and Lee, K. 2015. Stability of the osmoregulated promoterderived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli. J. Bacteriol. 197, 1297–1305.
Lim, B., Sim, S.H., Sim, M., Kim, K., Jeon, C.O., Lee, Y., Ha, N.C., and Lee, K. 2012. RNase III controls the degradation of corA mRNA in Escherichia coli. J. Bacteriol. 194, 2214–2220.
Matsunaga, J., Simons, E.L., and Simons, R.W. 1996. RNase III autoregulation: structure and function of rncO, the posttranscriptional “operator”. RNA 2, 1228–1240.
Matsunaga, J., Simons, E.L., and Simons, R.W. 1997. Escherichia coli RNase III (rnc) autoregulation occurs independently of rnc gene translation. Mol. Microbiol. 26, 1125–1135.
Mayer, J.E. and Schweiger, M. 1983. RNase III is positively regulated by T7 protein kinase. J. Biol. Chem. 258, 5340–5343.
Nashimoto, H. and Uchida, H. 1985. DNA sequencing of the Escherichia coli ribonuclease III gene and its mutations. Mol. Gen. Genet. 201, 25–29.
Nicholson, A.W. 2011. Ribonuclease III and the role of doublestranded RNA processing in bacterial systems. Springer Berlin Heidelberg.
Nicholson, A.W. 2014. Ribonuclease III mechanisms of doublestranded RNA cleavage. Wiley Interdiscip. Rev. RNA 5, 31–48.
Nilsson, G., Belasco, J.G., Cohen, S.N., and von Gabain, A. 1984. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature 312, 75–77.
Paudyal, S., Alfonso-Prieto, M., Carnevale, V., Redhu, S.K., Klein, M.L., and Nicholson, A.W. 2015. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB. Proteins 83, 459–472.
Pertzev, A.V. and Nicholson, A.W. 2006. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res. 34, 3708–3721.
Rahmsdorf, H.J., Pai, S.H., Ponta, H., Herrlich, P., Roskoski, R.Jr., Schweiger, M., and Studier, F.W. 1974. Protein kinase induction in Escherichia coli by bacteriophage T7. Proc. Natl. Acad. Sci. USA 71, 586–589.
Redko, Y., Bechhofer, D.H., and Condon, C. 2008. Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol. Microbiol. 68, 1096–1106.
Regnier, P. and Portier, C. 1986. Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J. Mol. Biol. 187, 23–32.
Robert-Le Meur, M. and Portier, C. 1992. E. coli polynucleotide phosphorylase expression is autoregulated through an RNase IIIdependent mechanism. EMBO J. 11, 2633–2641.
Robertson, H.D., Webster, R.E., and Zinder, N.D. 1967. A nuclease specific for double-stranded RNA. Virology 32, 718–719.
Rouault, T.A. and Philpott, C.C. 2011. Metalloregulation. John Wiley and Sons.
Sim, M., Lim, B., Sim, S.H., Kim, D., Jung, E., Lee, Y., and Lee, K. 2014. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli. PLoS One 9, e100520.
Sim, S.H., Yeom, J.H., Shin, C., Song, W.S., Shin, E., Kim, H.M., Cha, C.J., Han, S.H., Ha, N.C., Kim, S.W., et al. 2010. Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation. Mol. Microbiol. 75, 413–425.
Sleator, R.D. and Hill, C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26, 49–71.
Song, W., Kim, Y.H., Sim, S.H., Hwang, S., Lee, J.H., Lee, Y., Bae, J., Hwang, J., and Lee, K. 2014. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli. Nucleic Acids Res. 42, 4669–4681.
Stead, M.B., Marshburn, S., Mohanty, B.K., Mitra, J., Pena Castillo, L., Ray, D., van Bakel, H., Hughes, T.R., and Kushner, S.R. 2011. Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res. 39, 3188–3203.
Watson, N. and Apirion, D. 1985. Molecular cloning of the gene for the RNA-processing enzyme RNase III of Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 849–853.
Wood, J.M. 1999. Osmosensing by bacteria: signals and membrane- based sensors. Microbiol. Mol. Biol. Rev. 63, 230–262.
Wood, J.M. 2006. Osmosensing by bacteria. Sci. STKE 2006, pe43.
Xu, W., Huang, J., and Cohen, S.N. 2008. Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J. Bacteriol. 190, 5526–5530.
Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., and Somero, G.N. 1982. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222.
Young, R.A. and Steitz, J.A. 1978. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc. Natl. Acad. Sci. USA 75, 3593–3597.
Zhang, K. and Nicholson, A.W. 1997. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl. Acad. Sci. USA 94, 13437–13441.
Author information
Authors and Affiliations
Corresponding authors
Additional information
These authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Lim, B., Sim, M., Lee, H. et al. Regulation of Escherichia coli RNase III activity. J Microbiol. 53, 487–494 (2015). https://doi.org/10.1007/s12275-015-5323-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-015-5323-x


