Skip to main content

In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10

Abstract

Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.

This is a preview of subscription content, access via your institution.

References

  1. Abdulelah, H.A. and Zainal-Abidin, B.A.H. 2007. In vivo antimalarial test of Nigeila sativa (black seed). Am. J. Pharmacol. Toxicol. 2, 46–50.

    Article  Google Scholar 

  2. Adamczeski, M., Reed, A.R., and Crews, P. 1995. New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa. J. Nat. Prod. 58, 201–208.

    CAS  Article  PubMed  Google Scholar 

  3. Anthony, P.J., Fyfe, L., and Smith, H. 2005. Plant active components- a source for anti-parasitic agents. Trend Parasitol. 21, 462–468.

    CAS  Article  Google Scholar 

  4. Ata-ur-Rehman, S., Malik, H., Cun, H., and Clardy, J. 1985. Isolation and structure determination of nigellicine, a novel alkaloid from seeds of Nigella sativa. Tetrahedron Lett. 26, 2759–2762.

    Article  Google Scholar 

  5. Behal, V. 2000. Bioactive products from Streptomyces. Adv. Appl. Microbiol. 47, 113–157.

    CAS  Article  PubMed  Google Scholar 

  6. Belin, P., Moutiez, M., Lautru, S., Seguin, J., Pernodet, J.L., and Gondry, M. 2012. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep. 29, 961–979.

    CAS  Article  PubMed  Google Scholar 

  7. Ben Ameur Mehdi, R., Mellouli, L., Chabchoub, F., Fotso, S., and Bejar, S. 2004. Purification and structure elucidation of two biologically active molecules from a new isolated Streptomyces sp. US24 strain. Chem. Nat. Comp. 40, 510–513.

    Article  Google Scholar 

  8. Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1–26.

    CAS  Article  PubMed  Google Scholar 

  9. Bibb, M.J. 2005. Regulation of secondary metabolism in Streptomycetes. Curr. Opin. Microbiol. 8, 208–215.

    CAS  Article  PubMed  Google Scholar 

  10. Bin, Y., Junde, D., Xuefeng, Z., Xianwen, Y., Kyung, J.L., Lishu, W., Si, Z., and Yonghong, L. 2009. Proline-containing dipeptides from a marine sponge of a Callyspongia species. Helv. Chim. Acta. 92, 1112–1117.

    Article  Google Scholar 

  11. Bray, P.G., Ward, S.A., and O’Neill, P.M. 2005. Quinolines and artemisinin: chemistry, biology and history. Curr. Top. Microbiol. Immunol. 295, 3–38.

    CAS  PubMed  Google Scholar 

  12. Castillo, U.F., Strobel, G.A., Ford, E.J., Hess, W.M., Porter, H., Jensen, J.B., Albert, H., Robison, R., Condron, M.A.M., Teplow, D.B., et al. 2002. Munumbicins, wide spectrum antibiotics produced by Streptomyces (NRRL 30562) endophytic on Kennedia nigriscans. Microbiology 148, 2675–2685.

    CAS  Article  PubMed  Google Scholar 

  13. Coombs, J.T. and Franco, M.M. 2003. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Ekasari, W., Widyawaruyanti, A., Zaini, N.C., Syafruddin, D., Honda, T., and Morita, H. 2009. Antimalarial activity of Cassiarin from the leaves of Cassia siamea. Heterocycles 78, 1831–1836.

    CAS  Article  Google Scholar 

  15. Ernest, E.M.C. 1995. Advantages and limits of in-vivo screening test. Ann. Occup. Hygiene 39, 727–735.

    Article  Google Scholar 

  16. Espinel, M.A., Laszlo, A., Simonsen, L., Boulahbal, F., Kim, S.J., Reniero, A., Hoffner, S., Rieder, H.L., Binkin, N., Dye, C., et al. 2001. Global trends in resistance to antituberculosis drugs. N. Engl. J. Med. 344, 1294–1303.

    Article  Google Scholar 

  17. Fernandez, L.S., Buchanan, M.S., Carroll, A.R., Feng, Y.J., Quinn, R.J., and Avery, V.M. 2009. Flinderoles A-C: Antimalarial bisindole alkaloids from Flindersia species. Org. Lett. 11, 329–332.

    CAS  Article  PubMed  Google Scholar 

  18. Fiedler, H.P., Bruntner, C., Bull, A.T., Ward, A.C., Goodfellow, M., Potterat, O., Puder, C., and Mihm, G. 2005. Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87, 37–42.

    CAS  Article  PubMed  Google Scholar 

  19. Flärdh, K. and Buttner, M.J. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49.

    Article  PubMed  Google Scholar 

  20. Foley, M. and Tilley, L. 1998. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther. 79, 55–87.

    CAS  Article  PubMed  Google Scholar 

  21. Ghadin, N., Zin, N.M., Sabaratnam, V., Badya, N., Basri, D.F., Lian, H.H., and Sidik, N.M. 2008. Isolation and characterization of a novel endophytic Streptomyces SUK 06 with antimicrobial activity from Malaysian plants. Asian J. Plant Sci. 7, 189–194.

    Article  Google Scholar 

  22. Ibrahim, J., Mat Ali, R., and Goh, S.H. 1994. Toxic and antifungal properties of the essential oils of Cinnamomum species from Peninsular Malaysia. J. Trop. Forest Sci. 6, 286–292.

    Google Scholar 

  23. Isaka, M., Jaturapat, A., Kramyu, J., Tanticharoen, M., and Thebtaranonth, Y. 2002. Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC4785. Antimicrob. Agents Chemother. 46, 1112–1113.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. Jain, T.C., Dingerdissen, J.J., and Weisbach, J.A. 1977. Isolation and structure elucidation of Gancidin W. Heterocycles 7, 341–346.

    CAS  Article  Google Scholar 

  25. Jochen, W., Dajana, H., David, B.H., Ewald, B., and Hassan-Jomaa, A. 2002. In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob. Agents Chemother. 46, 2889–2894.

    Article  Google Scholar 

  26. Joy, D., Feng, X., and Mu, J. 2003. Early origin and recent expansion of Plasmodium falciparum. Science300 5617, 318–321.

    Article  Google Scholar 

  27. Keiser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces Genetics (2nd ed.). John Innes Foundation. Norwich, England.

    Google Scholar 

  28. Kurosawa, Y., Dorn, A., Kitsuji-Shirane, M., Shimada, H., Satoh, T., Matile, H., Hofheinz, W., Masciadri, R., Kansy, M., and Ridley, R.G. 2000. Hematin polimerization assay as a high-throughput screen for identification of new antimalarial pharmacophores. Antimicrob. Agents Chemother. 44, 2638–2644.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. Lipsitch, M., Tchetgen, E., and Cohen, T. 2010. Negative controls: A tools of detecting confounding and bias in observational studies. Epidemiology 21, 383–388.

    PubMed Central  Article  PubMed  Google Scholar 

  30. Magyar, A., Zhang, X., Abdi, F., Kohn, H., and Widger, W. 1999. Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant Rho proteins. J. Biol. Chem. 274, 7316–7324.

    CAS  Article  PubMed  Google Scholar 

  31. Peters, W. and Robinson, B.L. 1992. The chemotherapy of rodent malaria XLVII: studies on pyronaridine and other mannich base antimalarials. Ann. Trop. Med. Parasitol. 86, 455–465.

    CAS  PubMed  Google Scholar 

  32. Pillay, D. and Zambon, M. 1998. Antiviral drug resistance. British Med. J. 317, 660–662.

    CAS  Article  Google Scholar 

  33. Prudhomme, J., McDaniel, E., Ponts, N., Bertani, S., Fenical, W., Jensen, P., and Karine, L.R. 2008. Marine Actinomycete: A new source of compounds against the human malarial parasite. PLoS One 3, e2335.

    PubMed Central  Article  PubMed  Google Scholar 

  34. Rajendra, P.M., Elisabeth, H., Oliver, K., Heinz, H.F., Armin, M., Andreas, B., and Hartmut, L. 2004. Anti-cancer and antibacterial trioxacarcins with high anti-malarial activity from a marine Streptomycete and their absolute stereochemistry. J. Antibiot. 57, 771–779.

    Article  Google Scholar 

  35. Rhee, K.H. 2002. Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J. Gen. Appl. Microbiol. 48, 321–327.

    CAS  Article  PubMed  Google Scholar 

  36. Smaoui, S., Mathieu, F., Elleuch, L., Coppel, Y., Merlina, G., Karray- Rebai, I., and Mellouli, I. 2012. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J. Microbiol. Biotechnol. 28, 793–804.

    CAS  Article  PubMed  Google Scholar 

  37. Strobel, G. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products microbial. Microbiol. Mol. Biol. Rev. 67, 491–502.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  38. Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D. 2002. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623.

    CAS  Article  PubMed  Google Scholar 

  39. Wangchuk, P., Bremner, J., Samten, B., Rattanajak, R., and Kamchonwongpaisan, S. 2010. Antiplasmodial agents from the Bhutanese medicinal plant Corydalis calliantha. Phytother. Res. 24, 481–485.

    CAS  Article  PubMed  Google Scholar 

  40. Wellems, T.E. 2002. Plasmodium chloroquine resistance and the search for a replacement antimalarial drug. Science298 5591, 124–126.

    Article  Google Scholar 

  41. Yotoko, K.S.C. and Elisei, C. 2006. Malaria parasites (Apicomplexa, Haematozoea) and their relationships with their hosts: is there an evolutionary cost for the specialization. J. Zool. System. Evol. Res. 44, 265–270.

    Article  Google Scholar 

  42. Zainal-Abidin, B.A.H., Noorakmal, Z., and Othman, O. 1985. Ph. D. Thesis. National University of Malaysia, UKM Bangi Selangor, Malaysia.

    Google Scholar 

  43. Zin, N.M., Loi, C.S., Sarmin, N.M., and Rosli, A.N. 2010. Cultivation- dependent characterization of endophytic actinomycetes. Res. J. Microbiol. 5, 717–724.

    Article  Google Scholar 

  44. Zin, N.M., Ng, K.T., Sarmin, N.I., Getha, K., and Tan, G.Y. 2011. Anti-trypanosoma activity of endophytic Streptomycete. Curr. Res. Bacteriol. 4, 1–8.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noraziah Mohamad Zin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baba, M.S., Zin, N.M., Hassan, Z.A.A. et al. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J Microbiol. 53, 847–855 (2015). https://doi.org/10.1007/s12275-015-5076-6

Download citation

Keywords

  • antimalaria
  • endophytic
  • Streptomyces SUK10