Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains

Abstract

The aims of this study is to compare the growth and glucose metabolism of three Lactobacillus reuteri strains (i.e. DSM 20016, DSM 17938, and ATCC 53608) which are lactic acid bacteria of interest used for diverse applications such as probiotics implying the production of biomass, or for the production of valuable chemicals (3-hydroxypropionaldehyde, 3-hydroxypropionic acid, 1,3-propanediol). However, the physiological diversity inside the species, even for basic metabolisms, like its capacity of acidification or glucose metabolism, has not been studied yet. In the present work, the growth and metabolism of three strains representative of the species diversity have been studied in batch mode. The strains were compared through characterization of growth kinetics and evaluation of acidification kinetics, substrate consumption and product formation. The results showed significant differences between the three strains which may be explained, at least in part, by variations in the distribution of carbon source between two glycolytic pathways during the bacterial growth: the phosphoketolase or heterolactic pathway (PKP) and the Embden-Meyerhof pathway (EMP). It was also shown that, in the context of obtaining a large amount of biomass, DSM 20016 and DSM 17938 strains were the most effective in terms of growth kinetics. The DSM 17938 strain, which shows the more significant metabolic shift from EMP to PKP when the pH decreases, is more effective for lactate production.

This is a preview of subscription content, access via your institution.

References

  1. Ahrné, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A.E., and Molin, G. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85, 88–94.

    Article  PubMed  Google Scholar 

  2. Årskold, E., Lohmeier-Vogel, E., Cao, R., Roos, S., Rådstrom, P., and van Niel, E.W.J. 2008. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. J. Bacteriol. 190, 206–212.

    PubMed Central  Article  PubMed  Google Scholar 

  3. Casas, I.A. and Dobrogosz, W.J. 2000. Validation of probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis. 12, 247–285.

    Google Scholar 

  4. Cotter, P.D., Hill, C., and Ross, R.P. 2005. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788.

    CAS  Article  PubMed  Google Scholar 

  5. Doleyres, Y., Beck, P., Vollenweider, S., and Lacroix, C. 2005. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 68, 467–474.

    CAS  Article  PubMed  Google Scholar 

  6. Drozdzynska, A., Leja, K., and Czaczyk, K. 2011. Biotechnological production of 1.3-propanediol from crude glycerol. J. Biotechnol. Comput. Biol. Bionanotechnol. 92, 92–100.

    CAS  Google Scholar 

  7. Frese, S.A., Benson, A.K., Tannock, G.W., Loach, D.M., Kim, J., Zhang, M., Oh, P.L., Heng, N.C.K., Patil, P.B., Juge, N., et al. 2011. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 7, e1001314.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Garrigues, C., Loubi-re, P., Lindley, N.D., and Cocaign-Bousquet, M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179, 5282–5287.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Garrigues, C., Mercade, M., Cocaign-Bousquet, M., Lindley, N.D., and Loubi-re, P. 2001. Regulation of pyruvate metabolism in Lac tococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol. Bioeng. 74, 108–115.

    CAS  Article  PubMed  Google Scholar 

  10. Gilliland, S.E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87, 175–188.

    Article  Google Scholar 

  11. Hansen, E.B. 2002. Commercial bacterial starter cultures for fermented foods of the future. Int. J. Food Microbiol. 78, 119–131.

    Article  PubMed  Google Scholar 

  12. Hugenholtz, J. and Smid, E.J. 2002. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biotechnol. 13, 497–507.

    CAS  Article  PubMed  Google Scholar 

  13. Itoh, T. 1992. Functional benefits from lactic acid bacteria used in cultured milk. Anim. Sci. Technol. 63, 1276–1289.

    CAS  Google Scholar 

  14. Jiang, X., Meng, X., and Xian, M. 2009. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 82, 995–1003.

    CAS  Article  PubMed  Google Scholar 

  15. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209–224.

    CAS  Article  PubMed  Google Scholar 

  16. Luo, L.H., Seo, J.W., Baek, J.O., Oh, B.R., Heo, S.Y., Hong, W., Kim, D.H., and Kim, C.H. 2011. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl. Microbiol. Biotechnol. 89, 697–703.

    CAS  Article  PubMed  Google Scholar 

  17. L-thi-Peng, Q., Dileme, F.B., and Puhan, Z. 2002a. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 59, 289–296.

    Article  Google Scholar 

  18. L-thi-Peng, Q., Sch- rer, S., and Puhan, Z. 2002b. Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 60, 73–80.

    Article  Google Scholar 

  19. Morita, H., Toh, H., Fukuda, S., Horikawa, H., and Oshima, K. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15, 151–161.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. Picque, D., Perret, B., Latrille, E., and Corrieu, G. 1992. Caract-risation et classification de bact-ries lactiques - partir de la mesure de leur cin-tique d-acidification. Lebensmittel Wissenschaft und Technologie. 25, 181–186.

    Google Scholar 

  21. Pieterse, B., Leer, R.J., Schuren, F.H.J., and van der Werf, M.J. 2005. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151, 3881–3894.

    CAS  Article  PubMed  Google Scholar 

  22. Rodriguez, C., Rimaux, T., Fornaguera, M.J., Vrancken, G., Font de Valdez, G., De Vuyst, L., and Mozzi, F. 2012. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl. Microbiol. Biotechnol. 93, 2519–2527.

    CAS  Article  PubMed  Google Scholar 

  23. Rosander, A., Connolly, E., and Roos, S. 2008. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol. 74, 6032–6040.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. R-tti, D.P., Lacroix, C., Jeremic, T., Mathis, M., Die, A., and Vollenweider, S. 2011. Development of a reversible binding process for in situ removal of 3-hydroxypropionaldehyde during biotechnological conversion of glycerol. Biochem. Eng. J. 55, 176–184.

    Article  Google Scholar 

  25. Savino, F., Pelle, E., Palumeri, E., Oggero, R., and Miniero, R. 2007. Lactobacillus reuteri (American type culture collection strain 55730) versus simethicone in the treatment of infantile colic: A prospective randomized study. Pediatrics 119, 124–130.

    Article  Google Scholar 

  26. Spinnler, H.E. and Corrieu, G. 1989. Automatic method to quantify starter activity based on pH measurement. J. Dairy Res. 56, 755–764.

    Article  Google Scholar 

  27. Stanton, C., Ross, R.P., Fitzgerald, G.F., and Van Sinderen, D. 2005. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol. 16, 198–203.

    CAS  Article  PubMed  Google Scholar 

  28. Stevens, M.J.A., Vollenweider, S., Meile, L., and Lacroix, C. 2011. 1.3 propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microb. Cell Fact. 10, 61–69.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. Talarico, T.L., Axelsson, L.T., Novotny, J., Fiuzat, M., and Dobrogosz, W.J. 1990. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1.3 propanediol: NAD+ oxidoreductase. Appl. Environ. Microbiol. 56, 1195–1197.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Talarico, T.L., Casas, I.A., Chung, T.C., and Dobrogosz, W.J. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 32, 1854–1858.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. van Niel, E.W.J., Larsson, C.U., Lohmeier-Vogel, E.M., and R-dstr-m, P. 2012. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Internat. J. Food Microbiol. 152, 206–210.

    CAS  Article  Google Scholar 

  32. Vollenweider, S., Grassi, G., K-nig, I., and Puhan, Z. 2003. Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J. Agricult. Food Chem. 51, 3287–3293.

    CAS  Article  Google Scholar 

  33. Werner, S., Diekert, G., and Schuster, S. 2010. Revisiting the thermodynamic theory of optimal ATP stoichiometries by analysis of various ATP-producing metabolic pathways. J. Mol. Evol. 71, 346–355.

    CAS  Article  PubMed  Google Scholar 

  34. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., and van-t Riet, K. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henry-Eric Spinnler.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burgé, G., Saulou-Bérion, C., Moussa, M. et al. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. J Microbiol. 53, 702–710 (2015). https://doi.org/10.1007/s12275-015-5056-x

Download citation

Keywords

  • Lactobacillus reuteri
  • microbial growth
  • acidification kinetics
  • glucose metabolism
  • Embden-Meyerhof pathway
  • Phosphoketolase pathway
  • lactate production