Skip to main content
Log in

Distinct patterns of marine bacterial communities in the South and North Pacific Oceans

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The study of oceanic microbial communities is crucial for our understanding of the role of microbes in terms of biomass, diversity and ecosystem function. In this study, 16S rRNA gene tag pyrosequencing was used to investigate change in bacterial community structure between summer and winter water masses from Gosung Bay in the South Sea of Korea and Chuuk in Micronesia, located in the North and South Pacific Oceans, respectively. Summer and winter sampling from each water mass revealed highly diverse bacterial communities, containing ~900 Operational Taxonomic Units (OTUs). The microbial distribution and highly heterogeneous composition observed at both sampling sites were different from those of most macroorganisms. The bacterial communities in the seawater at both sites were most abundant in Proteobacteria during the summer in Gosung and in Bacterioidetes during the winter. The proportion of Cyanobacteria was higher in summer than in winter in Chuuk and similar in Gosung. Additionally, the microbial community during summer in Gosung was significantly different from other communities observed based on the unweighted UniFrac distance. These data suggest that in both oceanic areas sampled, the bacterial communities had distinct distribution patterns with spatially- and temporally-heterogeneous distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral-Zettler, L., Artigas, LF., Baross, J., Bharathi, P.A.L., Boetius, A., Chandramohan, D., Herndi, G., Kogure, K., Neal, P., Pedros-Alio, C., and et al. 2010. A global census of marine microbes. Life in the World’s Oceans: Diversity, Distribution and Abundance, pp. 223–245. In Malntyre, A. (ed.). Blackwell Publishing Ltd., Oxford.

    Google Scholar 

  • Barz, M., Beimgraben, C., Staller, T., Germer, F., Opitz, F., Marquardt, C., Schwarz, C., Gutekunst, K., Vanselow, K.H., Schmitz, R., and et al. 2010. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS ONE 5, e13846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becking, L.B. 1934. Geobiologie of inleiding tot de milieukunde, WP Van Stockum & Zoon.

    Google Scholar 

  • Brinkmeyer, R., Knittel, K., Jürgens, J., Weyland, H., Amann, R., and Helmke, E. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69, 6610–6619.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Casteleyn, G., Leliaert, F., Backeljau, T., Debeer, A.E., Kotaki, Y., Rhodes, L., Lundholm, N., Sabbe, K., and Vyverman, W. 2010. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc. Natl. Acad. Sci. USA 107, 12952–12957.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen, C.P., Tseng, C.H., Chen, C.A., and Tang, S.L. 2011. The dynamics of microbial partnerships in the coral Isopora palifera. ISME J. 5, 728–740.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crump, B.C., Kling, G.W., and Hobbie, J.E. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Envirion. Microbiol. 69, 2253–2268.

    Article  Google Scholar 

  • Danovaro, R., Corinaldesi, C., Dellanno, A., Fuhrman, J.A., Middelburg, J.J., Noble, R.T., and Suttle, C.A. 2011. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034.

    Article  PubMed  CAS  Google Scholar 

  • Emami, K., Askari, A., Ullrich, M., Mohinudeen, K., Anil, A.C., Khandeparker, L., Burgess, J.G., and Mesbahi, E. 2012. Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry. PLoS ONE 7, e38515.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finlay, B.J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L., and Brown, J.H. 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. USA 105, 7774–7778.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghiglione, J.F. and Murray, A.E. 2012. Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ. Microbiol. 14, 617–629.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni, S.J. and Vergin, K.L. 2012. Seasonality in ocean microbial communities. Science 335, 671–676.

    Article  PubMed  CAS  Google Scholar 

  • Hamady, M., Lozupone, C., and Knight, R. 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and Phylo-Chip data. ISME J. 4, 17–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harley, C.D., Randall Hughes, A., Hultgren, K.M., Miner, B.G., Sorte, C.J., Thornber, C.S., Rodriguez, L.F., Tomanek, L., and Williams, S.L. 2006. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241.

    Article  PubMed  Google Scholar 

  • Harvell, C.K., Kim, K., Burkholder, J.M., Colwell, R.R., Epstein, P.R., Grimes, D.J., Hofmann, E.E., Lipp, E.K., Osterhaus, A.D.M.E., Overstreet, R.M., and et al. 1999. Emerging marine diseases-climate links and anthropogenic factors. Science 285, 1505–1510.

    Article  PubMed  CAS  Google Scholar 

  • Huber, T., Faulkner, G., and Hugenholtz, P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319.

    Article  PubMed  CAS  Google Scholar 

  • Hur, M., Kim, Y., Song, H.R., Kim, J.M., Choi, Y.I., and Yi, H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77, 7611–7619.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson, C.N., Flowers, A.R., Noriea III, N.F., Zimmerman, A.M., Bowers, J.C., DePaola, A., and Grimes, D.J. 2010. Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico. Appl. Environ. Microbiol. 76, 7076–7084.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson, Z.I., Zinser, E.R., Coe, A., McNulty, N.P., Woodward, E.M., and Chisholm, S.W. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012a. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.S., Kim, J.N., Yoon, S.H., Chun, J., and Cerniglia, C.E. 2012b. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 18, 310–320.

    Article  PubMed  CAS  Google Scholar 

  • Ladau, J., Sharpton, T.J., Finucane, M.M., Jospin, G., Kembel, S.W., O’Dwyer, J., Koeppel, A.F., Green, J.L., and Pollard, K.S. 2013. Global marine bacterial diversity peaks at high latitudes in winter. ISME J 7, 1669–1677.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee, O.O., Yang, J., Bougouffa, S., Wang, Y., Batang, Z., Tian, R., Al-Suwailem, A., and Qian, P.Y. 2012. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl. Environ. Microbiol. 78, 7173–7184.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li, Z.Y., He, L.M., Wu, J., and Jiang, Q. 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Bio. Eco. 329, 75–85.

    Article  CAS  Google Scholar 

  • Lindström, E.S. 2001. Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes. Microb. Ecol. 42, 598–605.

    Article  PubMed  Google Scholar 

  • Martiny, J.B., Bohannan, B.J., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Homer-Devine, M.C., Kane, M., Krumins, J.A., Kuske, C.R., and et al. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112.

    Article  PubMed  CAS  Google Scholar 

  • McKew, B.A., Dumbrell, A.J., Daud, S.D., Hepburn, L., Thorpe, E., Mogensen, L., and Whitby, C. 2012. Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp. Appl. Environ. Microbiol. 78, 5229–5237.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morens, D.M. and Fauci, A.S. 2013. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 9, e1003467.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morrow, K.M., Moss, A.G., Chadwick, N.E., and Liles, M.R. 2012. Bacterial associates of two Caribbean coral species reveal speciesspecific distribution and geographic variability. Appl. Environ. Microbiol. 78, 6438–6449.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Motes, M.L., DePaola, A., Cook, D.W., Veazey, J.E., Hunsucker, J.C., Garthright, W.E., Boldgett, R.J., and Chirtel, S.J. 1998. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast Oysters (Crassostrea virginica). Appl. Environ. Microbiol. 64, 1459–1465.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pommier, T., Canbäck, B., Riemann, L., Bostrom, K.H., Lundberg, P., Tunlid, A., and Hagstrom, A. 2007. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880.

    Article  PubMed  CAS  Google Scholar 

  • Sul, W.J., Oliver, T.A., Ducklow, H.W., Amaral-Zettler, L.A., and Sogin, M.L. 2013. Marine bacteria exhibit a bipolar distribution. Proc. Natl. Acad. Sci. USA 110, 2342–2347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sunagawa, S., Woodley, C.M., and Medina, M. 2010. Threatened corals provide underexplored microbial habitats. PLoS ONE 5, e9554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolhouse, M.E. 2002. Population biology of emerging and reemerging pathogens. Trends Microbiol. 10, s3–s7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngjae Chung or Taek-Kyun Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, SS., Park, M., Hwang, J. et al. Distinct patterns of marine bacterial communities in the South and North Pacific Oceans. J Microbiol. 52, 834–841 (2014). https://doi.org/10.1007/s12275-014-4287-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4287-6

Keywords

Navigation