Skip to main content

Antiviral activity of 3,4’-dihydroxyflavone on influenza a virus


Influenza virus infection causes thousands of deaths and millions of hospitalizations worldwide every year and the emergence of resistance to anti-influenza drugs has prompted scientists to seek new natural antiviral materials. In this study, we screened 13 different flavonoids from various flavonoid groups to identify the most potent antiviral flavonoid against human influenza A/PR/8/34 (H1N1). The 3-hydroxyl group flavonoids, including 3,2᾿dihydroxyflavone (3,2᾿DHF) and 3,4᾿dihydroxyflavone (3,4᾿DHF), showed potent anti-influenza activity. They inhibited viral neuraminidase activity and viral adsorption onto cells. To confirm the anti-influenza activity of these flavonoids, we used an in vivo mouse model. In mice infected with human influenza, oral administration of 3,4᾿DHF significantly decreased virus titers and pathological changes in the lung and reduced body weight loss and death. Our data suggest that 3-hydroxyl group flavonoids, particularly 3,4᾿DHF, have potent antiviral activity against human influenza A/PR/8/34 (H1N1) in vitro and in vivo. Further clinical studies are needed to investigate the therapeutic and prophylactic potential of the 3-hydroxyl group flavonoids in treating influenza pandemics.


  • Bouvier N.M., Lowen A.C., and Palese P. 2008. Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J. Virol. 82, 10052–10058.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Carr J., Ives J., Kelly L., Lambkin R., Oxford J., Mendel D., Tai L., and Roberts N. 2002. Influenza virus carrying neuraminidase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo. Antiviral Res. 54, 79–88.

    CAS  PubMed  Article  Google Scholar 

  • Cerda B., Llorach R., Ceron J.J., Espin J.C., and Tomas-Barberan F.A. 2003. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur. J. Nutr. 42, 18–28.

    CAS  PubMed  Article  Google Scholar 

  • Gil M.I., Tomas-Barberan F.A., Hess-Pierce B., Holcroft D.M., and Kader A.A. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 48, 4581–4589.

    CAS  PubMed  Article  Google Scholar 

  • Havsteen B.H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67–202.

    CAS  PubMed  Article  Google Scholar 

  • Hayden F.G. 2006. Respiratory viral threats. Curr. Opin. Infect. Dis. 19, 169–178.

    PubMed  Article  Google Scholar 

  • Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., Buchy P., Chittaganpitch M., Chiu S.C., Dwyer D., and et al. 2009. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res. 83, 90–93.

    CAS  PubMed  Article  Google Scholar 

  • Imanishi N., Tuji Y., Katada Y., Maruhashi M., Konosu S., Mantani N., Terasawa K., and Ochiai H. 2002. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol. Immunol. 46, 491–494.

    CAS  PubMed  Article  Google Scholar 

  • Kim B.W., Lee E.R., Min H.M., Jeong H.S., Ahn J.Y., Kim J.H., Choi H.Y., Choi H., Kim E.Y., Park S.P., and et al. 2008. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther. 7, 1080–1089.

    CAS  PubMed  Article  Google Scholar 

  • Kim J.H., Song M., Kang G.H., Lee E.R., Choi H.Y., Lee C., Kim Y., Koo B.N., and Cho S.G. 2012. Combined treatment of 3- hydroxyflavone and imatinib mesylate increases apoptotic cell death of imatinib mesylate-resistant leukemia cells. Leu. Res. 36, 1157–1164.

    CAS  Article  Google Scholar 

  • Lee E.R., Kang G.H., and Cho S.G. 2007a. Effect of flavonoids on human health: old subjects but new challenges. Recent Pat. Biotechnol. 1, 139–150.

    CAS  PubMed  Article  Google Scholar 

  • Lee E.R., Kang Y.J., Choi H.Y., Kang G.H., Kim J.H., Kim B.W., Han Y.S., Nah S.Y., Paik H.D., Park Y.S., and et al. 2007b. Induction of apoptotic cell death by synthetic naringenin derivatives in human lung epithelial carcinoma A549 cells. Biol. Pharm. Bull. 30, 2394–2398.

    CAS  PubMed  Article  Google Scholar 

  • Lee E.R., Kim J.H., Choi H.Y., Jeon K., and Cho S.G. 2011a. Cytoprotective effect of eriodictyol in UV-irradiated keratinocytes via phosphatase-dependent modulation of both the p38 MAPK and Akt signaling pathways. Cell. Physiol. Biochem. 27, 513–524.

    CAS  PubMed  Article  Google Scholar 

  • Lee K.S., Kim E.Y., Jeon K., Cho S.G., Han Y.J., Yang B.C., Lee S.S., Ko M.S., Riu K.J., Lee H.T., and et al. 2011b. 3,4-Dihydroxyflavone acts as an antioxidant and antiapoptotic agent to support bovine embryo development in vitro. J. Reprod. Dev. 57, 127–134.

    CAS  PubMed  Article  Google Scholar 

  • Lee E.R., Kim J.H., Kang Y.J., and Cho S.G. 2007c. The antiapoptotic and anti-oxidant effect of eriodictyol on UV-induced apoptosis in keratinocytes. Biol. Pharm. Bull. 30, 32–37.

    CAS  PubMed  Article  Google Scholar 

  • Liu A.L., Liu B., Qin H.L., Lee S.M., Wang Y.T., and Du G.H. 2008. Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta Med. 74, 847–851.

    CAS  PubMed  Article  Google Scholar 

  • Marjuki H., Wernery U., Yen H.L., Franks J., Seiler P., Walker D., Krauss S., and Webster R.G. 2009. Isolation of highly pathogenic avian influenza H5N1 virus from Saker falcons (Falco cherrug) in the Middle East. Adv. Virol. 2009, 1.

    PubMed  Article  Google Scholar 

  • Middleton E., Jr. 1998. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 439, 175–182.

    CAS  PubMed  Article  Google Scholar 

  • Neumann G., Fujii K., Kino Y., and Kawaoka Y. 2005. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. USA 102, 16825–16829.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Palese P. 2004. Influenza: old and new threats. Nat. Med. 10, S82–87.

    Article  Google Scholar 

  • Roberts N.A. 2001. Anti-influenza drugs and neuraminidase inhibitors. Prog. Drug Res. Spec No, 35–77.

    Google Scholar 

  • Smee D.F., Hurst B.L., Wong M.H., Bailey K.W., Tarbet E.B., Morrey J.D., and Furuta Y. 2010. Effects of the combination of favipiravir (T-705) and oseltamivir on influenza A virus infections in mice. Antimicrob. Agents Chemother. 54, 126–133.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Song J.M., Lee K.H., and Seong B.L. 2005. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 68, 66–74.

    CAS  PubMed  Article  Google Scholar 

  • Williamson G. and Manach C. 2005. Bioavailability and bioefficacy of polyphenols in humans. Am. J. Clin. Nutr. 81, 243S–255S.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ssang-Goo Cho.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.K., Choi, H.Y., Hwang, JS. et al. Antiviral activity of 3,4’-dihydroxyflavone on influenza a virus. J Microbiol. 52, 521–526 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • flavonoid
  • 3-hydroxyl group flavonoids
  • 3,4᾿dihydroxyflavone
  • influenza virus