Skip to main content
Log in

Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A novel Gram-negative, obligate aerobic, non-motile, and both coccobacillus- and bacillus-shaped bacterium, designated strain HYN18T, was isolated from the intestinal tract of a honey bee (Apis mellifera). The isolate was oxidasenegative and catalase-positive. Strain HYN18T showed optimum growth at 25°C, pH 6–7, and in the presence of 1% (w/v) NaCl in trypticase soy broth medium. The isolate was negative for hydrolyses of starch, casein, gelatin and urea, indole production from tryptone and hemolysis on sheep blood agar. A phylogenetic analysis based on the 16S rRNA gene and rpoB gene sequence showed that strain HYN18T was most closely related to Acinetobacter nectaris SAP 763.2T and A. boissieri SAP 284.1T with 98.3% and 98.1% similarity (16S rRNA gene), respectively, and 84.4% similarity with Acinetobacter nectaris SAP 763.2T (rpoB gene). The major cellular fatty acids were summed features 3 (comprising C16:1ω7c /C16:1ω6c ), C12:0 and C16:0. The main isoprenoid quinone was ubiquinone-9 (Q-9). The polar lipids of strain HYN18T were phosphatidylethanolamine, three unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The DNA G+C content was 40.6 mol%. DNADNA hybridization experiments indicated less than 33 ± 10% relatedness to the closest phylogenetic species, Acinetobacter nectaris SAP 763.2T. Thus, the phenotypic, phylogenetic and genotypic analyses indicate that strain HYN18T is a novel species within the genus Acinetobacter, for which the name Acinetobacter apis is proposed. The type strain is HYN18T (=KACC 16906T =JCM 18575T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J.H., Hong, I.P., Bok, J.I., Kim, B.Y., Song, J., and Weon, H.Y. 2012. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50, 735–745.

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez, S., Lievens, B., Jacquemyn, H., and Herrera, C.M. 2013. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect- pollinated plants. Int. J. Syst. Evol. Microbiol. 63, 1532–1539.

    Article  PubMed  Google Scholar 

  • Bae, J.W., Rhee, S.K., Park, J.R., Chung, W.H., Nam, Y.D., Lee, I., Kim, H., and Park, Y.H. 2005. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71, 8825–8835.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benson, H.J. 1994. Microbiological applications: a laboratory manual in general microbiology. WC Brown.

    Google Scholar 

  • Brisou, and Prevot. 1954. New species and varieties of Achromobacter isolated from marine environment. Annales de ľInstitut Pasteur 86, 118–120.

    Google Scholar 

  • Carr, E.L., Kampfer, P., Patel, B.K., Gurtler, V., and Seviour, R.J. 2003. Seven novel species of Acinetobacter isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53, 953–963.

    Article  CAS  PubMed  Google Scholar 

  • Chang, H.W., Nam, Y.D., Jung, M.Y., Kim, K.H., Roh, S.W., Kim, M.S., Jeon, C.O., Yoon, J.H., and Bae, J.W. 2008. Statistical superiority of genome-probing microarrays as genomic DNADNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J. Microbiol. Methods 75, 523–530.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., and et al. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Cruze, J., Singer, J., and Finnerty, W. 1979. Conditions for quantitative transformation in Acinetobacter calcoaceticus. Curr. Microbiol. 3, 129–132.

    Article  CAS  Google Scholar 

  • Dahllof, I., Baillie, H., and Kjelleberg, S. 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66, 3376–3380.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Euzeby, J.P. 1997. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590–592.

    Article  CAS  PubMed  Google Scholar 

  • Evans, J.D. and Armstrong, T.N. 2006. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol. 6, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A. 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T.L. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, D., Baik, K.S., Kim, M.S., Park, S.C., Kim, S.S., Rhee, M.S., Kwak, Y.S., and Seong, C.N. 2008. Acinetobacter soli sp. nov., isolated from forest soil. J. Microbiol. 46, 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kluge, A.G. and Farris, F.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1–32.

    Article  Google Scholar 

  • La Scola, B. 2006. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J. Clin. Microbiol. 44, 827–832.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York, USA.

    Google Scholar 

  • Loy, A., Schulz, C., Lucker, S., Schopfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A., and Wagner, M. 2005. 16S rRNA genebased oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl. Environ. Microbiol. 71, 1373–1386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malhotra, J., Anand, S., Jindal, S., Rajagopal, R., and Lal, R. 2012. Acinetobacter indicus sp. nov., isolated from a hexachlorocyclohexane dump site. Int. J. Syst. Evol. Microbiol. 62, 2883–2890.

    Article  CAS  PubMed  Google Scholar 

  • MIDI. 1999. Sherlock Microbial Identification System Operating Manual, version 3.0. MIDI, Inc.

    Google Scholar 

  • Newark, DE. Mobley, H., Cortesia, M.J., Rosenthal, L., and Jones, B. 1988. Characterization of urease from Campylobacter pylori. J. Clin. Microbiol. 26, 831–836.

    Google Scholar 

  • Morse, R.A. and Calderone, N.W. 2000. The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult. 127, 1–15.

    Google Scholar 

  • Navia, M.M., Ruiz, J., and Vila, J. 2002. Characterization of an integron carrying a new class D beta-lactamase (OXA-37) in Acinetobacter baumannii. Microb. Drug Resist. 8, 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Nemec, A., Dijkshoorn, L., Cleenwerck, I., De Baere, T., Janssens, D., Van Der Reijden, T.J., Jezek, P., and Vaneechoutte, M. 2003. Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 53, 1563–1567.

    Article  CAS  PubMed  Google Scholar 

  • Nemec, A., Musilek, M., Maixnerova, M., De Baere, T., van der Reijden, T.J., Vaneechoutte, M., and Dijkshoorn, L. 2009. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int. J. Syst. Evol. Microbiol. 59, 118–124.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, Y., Ino, T., and Iizuka, H. 1988. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38, 209–211.

    Article  Google Scholar 

  • Oldroyd, B.P. 2007. What’s killing American honey bees? PLoS Biol. 5, e1–8.

    Article  Google Scholar 

  • Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 79, 59–65.

    Article  Google Scholar 

  • Roh, S.W., Lee, H.W., Yim, K.J., Shin, N.R., Lee, J., Whon, T.W., Lim, N.L., Kim, D., and Bae, J.W. 2013. Rhodopirellula rosea sp. nov., a novel bacterium isolated from an ark clam Scapharca broughtonii. J. Microbiol. 51, 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI., Newark, DE, USA.

    Google Scholar 

  • Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization, pp. 607–654. In Gerhardt, R.G.E.M.P., Wood, W.A., and Kreig, N.R. (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Taguchi, R., Houjou, T., Nakanishi, H., Yamazaki, T., Ishida, M., Imagawa, M., and Shimizu, T. 2005. Focused lipidomics by tandem mass spectrometry. J. Chromatogr. B. 823, 26–36.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. doi: 10.1093/molbev/msr1-1.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tindall, B.J. 1990. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66, 199–202.

    Article  CAS  Google Scholar 

  • Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaz-Moreira, I., Novo, A., Hantsis-Zacharov, E., Lopes, A.R., Gomila, M., Nunes, O.C., Manaia, C.M., and Halpern, M. 2011. Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. Int. J. Syst. Evol. Microbiol. 61, 2837–2843.

    Article  CAS  PubMed  Google Scholar 

  • Wayne, L.G., Brenner, D.J., and Colwell, R.R. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

  • Woolhouse, M.E., Haydon, D.T., and Antia, R. 2005. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244.

    Article  PubMed  Google Scholar 

  • Xin, H., Itoh, T., Zhou, P., Suzuki, K., Kamekura, M., and Nakase, T. 2000. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int. J. Syst. Evol. Microbiol. 50, 1297–1303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Bae.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and rpoB gene sequences of strain HYN18T are JX402203 and JX863071, respec tively.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, P.S., Shin, NR., Kim, J.Y. et al. Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera . J Microbiol. 52, 639–645 (2014). https://doi.org/10.1007/s12275-014-4078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4078-0

Keywords

Navigation