Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Journal of Microbiology
  3. Article
Mechanisms of synergy in polymicrobial infections
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A framework for testing the impact of co-infections on host gut microbiomes

09 August 2022

Dominik W. Schmid, Gloria Fackelmann, … Simone Sommer

The Human Microbiome: An Acquired Organ?

17 February 2022

Rajkumar Dhanaraju & Desirazu N. Rao

Strain-level epidemiology of microbial communities and the human microbiome

13 August 2020

Yan Yan, Long H. Nguyen, … Curtis Huttenhower

Bacterial dominance is due to effective utilisation of secondary metabolites produced by competitors

11 February 2020

Benjamin G. Morgan, Paul Warren, … Damian W. Rivett

Tools for Analysis of the Microbiome

31 January 2020

Jessica Galloway-Peña & Blake Hanson

Spanish microbiology in an era of constant advances: a view from the battleground

30 July 2021

César Nombela

Mikrobiome — Forschung zwischen Theorie und praktischer Anwendung

25 November 2020

Michael Schloter, Folker Meyer & Gabriele Berg

Advancing functional and translational microbiome research using meta-omics approaches

06 December 2019

Xu Zhang, Leyuan Li, … Daniel Figeys

Methodological tools to study species of the genus Burkholderia

10 November 2021

Viola Camilla Scoffone, Gabriele Trespidi, … Silvia Buroni

Download PDF
  • Review
  • Published: 01 March 2014

Mechanisms of synergy in polymicrobial infections

  • Justine L. Murray1,
  • Jodi L. Connell1,
  • Apollo Stacy1,
  • Keith H. Turner1 &
  • …
  • Marvin Whiteley1 

Journal of Microbiology volume 52, pages 188–199 (2014)Cite this article

  • 2318 Accesses

  • 111 Citations

  • Metrics details

Abstract

Communities of microbes can live almost anywhere and contain many different species. Interactions between members of these communities often determine the state of the habitat in which they live. When these habitats include sites on the human body, these interactions can affect health and disease. Polymicrobial synergy can occur during infection, in which the combined effect of two or more microbes on disease is worse than seen with any of the individuals alone. Powerful genomic methods are increasingly used to study microbial communities, including metagenomics to reveal the members and genetic content of a community and metatranscriptomics to describe the activities of community members. Recent efforts focused toward a mechanistic understanding of these interactions have led to a better appreciation of the precise bases of polymicrobial synergy in communities containing bacteria, eukaryotic microbes, and/or viruses. These studies have benefited from advances in the development of in vivo models of polymicrobial infection and modern techniques to profile the spatial and chemical bases of intermicrobial communication. This review describes the breadth of mechanisms microbes use to interact in ways that impact pathogenesis and techniques to study polymicrobial communities.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Aguzzi, A., Baumann, F., and Bremer, J. 2008. The prion’s elusive reason for being. Annu. Rev. Neurosci. 31, 439–477.

    CAS  PubMed  Google Scholar 

  • Armbruster, C.E., Hong, W., Pang, B., Weimer, K.E., Juneau, R.A., Turner, J., and Swords, W.E. 2010. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. mBio 1.

  • Asakawa, R., Komatsuzawa, H., Kawai, T., Yamada, S., Goncalves, R.B., Izumi, S., Fujiwara, T., Nakano, Y., Suzuki, N., Uchida, Y., and et al. 2003. Outer membrane protein 100, a versatile virulence factor of Actinobacillus actinomycetemcomitans. Mol. Microbiol. 50, 1125–1139.

    CAS  PubMed  Google Scholar 

  • Bakaletz, L.O. 2004. Developing animal models for polymicrobial diseases. Nat. Rev. Microbiol. 2, 552–568.

    CAS  PubMed  Google Scholar 

  • Bakaletz, L.O. 2009. Chinchilla as a robust, reproducible and polymicrobial model of otitis media and its prevention. Expert Rev. Vaccines 8.

  • Bjornson, H.S. 1982. Bacterial synergy, virulence factors, and host defense mechanisms in the pathogenesis of intraabdominal infections. In Simmons, R.L. (ed.), Topics in intraabdominal surgical infection, pp. 65–78. Appleton-Century-Crofts, Norwalk, CT, USA.

    Google Scholar 

  • Brogden, K.A. and Guthmiller, J.M. 2002. Polymicrobial diseases. ASM Press, Washington, USA.

    Google Scholar 

  • Brook, I., Hunter, V., and Walker, R.I. 1984. Synergistic effect of Bacteroides, Clostridium, Fusobacterium, anaerobic cocci, and aerobic bacteria on mortality and induction of subcutaneous abscesses in mice. J. Infect. Dis. 149, 924–928.

    CAS  PubMed  Google Scholar 

  • Brown, S.A. and Whiteley, M. 2007. A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J. Bacteriol. 189, 6407–6414.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, P.B., Davern, L.B., Katz, J., Eldridge, J.H., and Michalek, S.M. 1996. Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. Oral Microbiol. Immunol. 11, 274–281.

    CAS  PubMed  Google Scholar 

  • Chen, T. and Duncan, M.J. 2004. Gingipain adhesin domains mediate Porphyromonas gingivalis adherence to epithelial cells. Microb. Pathog. 36, 205–209.

    CAS  PubMed  Google Scholar 

  • Connell, J.L., Ritschdorff, E.T., Whiteley, M., and Shear, J.B. 2013. 3D printing of microscopic bacterial communities. Proc. Natl. Acad. Sci. USA 110, 18380–18385.

    CAS  PubMed  Google Scholar 

  • Connell, J.L., Whiteley, M., and Shear, J.B. 2012. Sociomicrobiology in engineered landscapes. Nat. Chem. Biol. 8, 10–13.

    CAS  Google Scholar 

  • Cook, L.C., LaSarre, B., and Federle, M.J. 2013. Interspecies communication among commensal and pathogenic streptococci. mBio 4, e00382–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costerton, J.W., Montanaro, L., and Arciola, C.R. 2005. Biofilm in implant infections: its production and regulation. Int. J. Artif. Organs 28, 1062–1068.

    CAS  PubMed  Google Scholar 

  • Craven, D.E. and Steger, K.A. 1995. Epidemiology of nosocomial pneumonia. New perspectives on an old disease. Chest 108, 1S–16S.

    CAS  PubMed  Google Scholar 

  • Dalton, T., Dowd, S.E., Wolcott, R.D., Sun, Y., Watters, C., Griswold, J.A., and Rumbaugh, K.P. 2011. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One 6, e27317.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darouiche, R.O. 2001. Device-associated infections: a macroproblem that starts with microadherence. Clin. Infect. Dis. 33, 1567–1572.

    CAS  PubMed  Google Scholar 

  • Domann, E., Hong, G., Imirzalioglu, C., Turschner, S., Kuhle, J., Watzel, C., Hain, T., Hossain, H., and Chakraborty, T. 2003. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J. Clin. Microbiol. 41, 5500–5510.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doughty, D.M., Dieterle, M., Sessions, A.L., Fischer, W.W., and Newman, D.K. 2014. Probing the subcellular localization of hopanoid lipids in bacteria using nanoSIMS. PLoS One 9, e84455.

    PubMed Central  PubMed  Google Scholar 

  • Duan, K., Dammel, C., Stein, J., Rabin, H., and Surette, M.G. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50, 1477–1491.

    CAS  PubMed  Google Scholar 

  • Dymock, D., Weightman, A.J., Scully, C., and Wade, W.G. 1996. Molecular analysis of microflora associated with dentoalveolar abscesses. J. Clin. Microbiol. 34, 537–542.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eberth, C.J. 1881. Neue Untersuchungen über den bacillus des Abdominaltyphus. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 83, 486–501.

    Google Scholar 

  • Fouchier, R.A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J., van den Hoogen, B.G., Peiris, M., Lim, W., Stohr, K., and Osterhaus, A.D. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423, 240.

    CAS  PubMed  Google Scholar 

  • Frias-Lopez, J., Shi, Y., Tyson, G.W., Coleman, M.L., Schuster, S.C., Chisholm, S.W., and Delong, E.F. 2008. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. USA 105, 3805–3810.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaffky, G. 1884. Zur Ätiologie des Abdominal-Typhus. Mitteillungen aus dem Kaiserlichen Gesundheitsamt 2, 372–420.

    Google Scholar 

  • Gans, J., Wolinsky, M., and Dunbar, J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390.

    CAS  PubMed  Google Scholar 

  • Giebink, G.S., Berzins, I.K., Marker, S.C., and Schiffman, G. 1980. Experimental otitis media after nasal inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect. Immun. 30, 445–450.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giebink, G.S., Payne, E.E., Mills, E.L., Juhn, S.K., and Quie, P.G. 1976. Experimental otitis media due to Streptococcus pneumoniae: immunopathogenic response in the chinchilla. J. Infect. Dis. 134, 595–604.

    CAS  PubMed  Google Scholar 

  • Gonzalez, D.J., Haste, N.M., Hollands, A., Fleming, T.C., Hamby, M., Pogliano, K., Nizet, V., and Dorrestein, P.C. 2011. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157, 2485–2492.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon, H.A., and Pesti, L. 1971. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grenier, D. 1992. Demonstration of a bimodal coaggregation reaction between Porphyromonas gingivalis and Treponema denticola. Oral Microbiol. Immunol. 7, 280–284.

    CAS  PubMed  Google Scholar 

  • Harriott, M.M., and Noverr, M.C. 2009. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob. Agents Chemother. 53, 3914–3922.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holley, J.L., Bernardini, J., and Piraino, B. 1992. Polymicrobial peritonitis in patients on continuous peritoneal dialysis. Am. J. Kidney Dis. 19, 162–166.

    CAS  PubMed  Google Scholar 

  • Hsu, C.C., White, N.M., Hayashi, M., Lin, E.C., Poon, T., Banerjee, I., Chen, J., Pfaff, S.L., Macagno, E.R., and Dorrestein, P.C. 2013. Microscopy ambient ionization top-down mass spectrometry reveals developmental patterning. Proc. Natl. Acad. Sci. USA 110, 14855–14860.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imirzalioglu, C., Hain, T., Chakraborty, T., and Domann, E. 2008. Hidden pathogens uncovered: metagenomic analysis of urinary tract infections. Andrologia 40, 66–71.

    CAS  PubMed  Google Scholar 

  • Jacobsen, F., Fisahn, C., Sorkin, M., Thiele, I., Hirsch, T., Stricker, I., Klaassen, T., Roemer, A., Fugmann, B., and Steinstraesser, L. 2011. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 55, 2325–2334.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jander, G., Rahme, L.G., and Ausubel, F.M. 2000. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 3843–3845.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurcisek, J.A., Durbin, J.E., Kusewitt, D.F., and Bakaletz, L.O. 2003. Anatomy of the nasal cavity in the chinchilla. Cells Tissues Organs 174, 136–152.

    PubMed  Google Scholar 

  • Kämmerer, H. 1924. Beiträge zur Bedeutung des Bakteriellen Synergismus für die Biologie. Klinische Wochenschrift 3, 723–727.

    Google Scholar 

  • Kaplan, A.H., Weber, D.J., Oddone, E.Z., and Perfect, J.R. 1989. Infection due to Actinobacillus actinomycetemcomitans: 15 cases and review. Rev. Infect. Dis. 11, 46–63.

    CAS  PubMed  Google Scholar 

  • Kaplan, C.W., Lux, R., Haake, S.K., and Shi, W. 2009. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71, 35–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kesavalu, L., Holt, S.C., and Ebersole, J.L. 1998. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol. Immunol. 13, 373–377.

    CAS  PubMed  Google Scholar 

  • Kesavalu, L., Sathishkumar, S., Bakthavatchalu, V., Matthews, C., Dawson, D., Steffen, M., and Ebersole, J.L. 2007. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect. Immun. 75, 1704–1712.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, H.J., Boedicker, J.Q., Choi, J.W., and Ismagilov, R.F. 2008. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, H.J., Du, W.B., and Ismagilov, R.F. 2011. Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(II). Integr Biol-Uk 3, 126–133.

    CAS  Google Scholar 

  • Kline, K.A., Schwartz, D.J., Gilbert, N.M., Hultgren, S.J., and Lewis, A.L. 2012. Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect. Immun. 80, 4186–4194.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch, R. 1876. Untersuchungen über Bakterien: V. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. Cohns Beitrage zur Biologie der Pflanzen 2, 277–310.

    Google Scholar 

  • Koch, R. 1878 Untersuchungen über die Ätiologie der Wundinfektionskrankheiten. Vogel, Leipzig, Germany.

    Google Scholar 

  • Koch, R. 1882. Die Ätiologie der Tuberkulose. Berliner. Klinische. Wochenschrift. 19, 221–230.

    Google Scholar 

  • Koch, R. 1893. Über den augenblicklichen Stand der bakteriologischen Choleradiagnose. Zeitschrift für Hygiene und Infectionskrankheiten 14, 319–333.

    Google Scholar 

  • Kolenbrander, P.E. and London, J. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175, 3247–3252.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolenbrander, P.E., Palmer, R.J., Jr., Periasamy, S., and Jakubovics, N.S. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471–480.

    CAS  PubMed  Google Scholar 

  • Korgaonkar, A., Trivedi, U., Rumbaugh, K.P., and Whiteley, M. 2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110, 1059–1064.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozarov, E.V., Dorn, B.R., Shelburne, C.E., Dunn, W.A., Jr., and Progulske-Fox, A. 2005. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25, e17–18.

    CAS  PubMed  Google Scholar 

  • Laufer, A.S., Metlay, J.P., Gent, J.F., Fennie, K.P., Kong, Y., and Pettigrew, M.M. 2011. Microbial communities of the upper respiratory tract and otitis media in children. mBio 2, e00245–00210.

    PubMed Central  PubMed  Google Scholar 

  • Laveran, A. 1880. Note sur un nouveau parasite trouvè dans le sang de plusieurs malades atteints de fièvre palustre. Bull. Acad. Natl. Med. 9, 1235–1236.

    Google Scholar 

  • Lavigne, J.P., Nicolas-Chanoine, M.H., Bourg, G., Moreau, J., and Sotto, A. 2008. Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the Caenorhabditis elegans model. PLoS One 3, e3370.

    PubMed Central  PubMed  Google Scholar 

  • Lim, Y.W., Schmieder, R., Haynes, M., Willner, D., Furlan, M., Youle, M., Abbott, K., Edwards, R., Evangelista, J., Conrad, D., and Rohwer, F. 2012. Metagenomics and metatranscriptomics: Windows on CF-associated viral and microbial communities. J. Cyst. Fibros.12, 154–164.

    Google Scholar 

  • Ling, Z., Kong, J., Liu, F., Zhu, H., Chen, X., Wang, Y., Li, L., Nelson, K.E., Xia, Y., and Xiang, C. 2010. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11, 488.

    PubMed Central  PubMed  Google Scholar 

  • Liu, X., Ramsey, M.M., Chen, X., Koley, D., Whiteley, M., and Bard, A.J. 2011. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc. Natl. Acad. Sci. USA 108, 2668–2673.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch, A.S. and Robertson, G.T. 2008. Bacterial and fungal biofilm infections. Annu. Rev. Med. 59, 415–428.

    CAS  PubMed  Google Scholar 

  • Macklaim, J.M., Fernandes, A.D., Di Bella, J.M., Hammond, J., Reid, G., and Gloor, G.B. 2013. Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 1, 1–11.

    Google Scholar 

  • Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., and Ausubel, F.M. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa Caenorhabditis elegans pathogenesis model. Cell 96, 47–56.

    CAS  PubMed  Google Scholar 

  • Marra, A.R., Bearman, G.M., Wenzel, R.P., and Edmond, M.B. 2005. Comparison of the systemic inflammatory response syndrome between monomicrobial and polymicrobial Pseudomonas aeruginosa nosocomial bloodstream infections. BMC Infect. Dis. 5, 94.

    PubMed Central  PubMed  Google Scholar 

  • Mashburn, L.M., Jett, A.M., Akins, D.R., and Whiteley, M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187, 554–566.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mastropaolo, M.D., Evans, N.P., Byrnes, M.K., Stevens, A.M., Robertson, J.L., and Melville, S.B. 2005. Synergy in polymicrobial infections in a mouse model of type 2 diabetes. Infect. Immun. 73, 6055–6063.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mestas, J. and Hughes, C.C. 2004. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738.

    CAS  PubMed  Google Scholar 

  • Miller, W.D. 1890. Micro-organisms of the human mouth, p. 25. The S.S. White Dental MFG. Co, Philadelphia, USA.

    Google Scholar 

  • Moree, W.J., Phelan, V.V., Wu, C.H., Bandeira, N., Cornett, D.S., Duggan, B.M., and Dorrestein, P.C. 2012. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc. Natl. Acad. Sci. USA 109, 13811–13816.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mylonakis, E., Casadevall, A., and Ausubel, F.M. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3, e101.

    PubMed Central  PubMed  Google Scholar 

  • Nagashima, H., Takao, A., and Maeda, N. 1999. Abscess forming ability of Streptococcus milleri group: synergistic effect with Fusobacterium nucleatum. Microb. Immunol. 43, 207–216.

    CAS  Google Scholar 

  • Nelson, A., De Soyza, A., Perry, J.D., Sutcliffe, I.C., and Cummings, S.P. 2012. Polymicrobial challenges to Koch’s postulates: ecological lessons from the bacterial vaginosis and cystic fibrosis microbiomes. Innate Immun. 18, 774–783.

    PubMed  Google Scholar 

  • Nguyen, D.D., Wu, C.H., Moree, W.J., Lamsa, A., Medema, M.H., Zhao, X.L., Gavilan, R.G., Aparicio, M., Atencio, L., Jackson, C., and et al. 2013. MS/MS networking guided analysis of molecule and gene cluster families. Proc. Natl. Acad. Sci. USA 110, E2611–E2620.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orth, R.K., O’Brien-Simpson, N.M., Dashper, S.G., and Reynolds, E.C. 2011. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol. Oral Microbiol. 26, 229–240.

    PubMed  Google Scholar 

  • Ovchinnikova, O.S., Kjoller, K., Hurst, G.B., Pelletier, D.A., and Van Berkel, G.J. 2014. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging. Anal. Chem. 86, 1083–1090.

    CAS  PubMed  Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. 1986. The analysis of natural microbial populations by rRNA sequences. Adv. Microb. Ecol. 9, 1–55.

    CAS  Google Scholar 

  • Partida-Martinez, L.P., and Hertweck, C. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888.

    CAS  PubMed  Google Scholar 

  • Paster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A., Sahasrabudhe, A., and Dewhirst, F.E. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paster, B.J., Olsen, I., Aas, J.A., and Dewhirst, F.E. 2006. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000 42, 80–87.

    Google Scholar 

  • Pasteur, L. and Joubert, J. 1877. Charbon et septicemie. Compt. Rend. Acad. 85, 101–105.

    Google Scholar 

  • Peleg, A.Y., Tampakakis, E., Fuchs, B.B., Eliopoulos, G.M., Moellering, R.C., Jr., and Mylonakis, E. 2008. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 14585–14590.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Percival, S.L., Thomas, J.G., and Williams, D.W. 2010. Biofilms and bacterial imbalances in chronic wounds: anti-Koch. Int. Wound J. 7, 169–175.

    PubMed  Google Scholar 

  • Peters, B.M., Jabra-Rizk, M.A., O’May, G.A., Costerton, J.W., and Shirtliff, M.E. 2012a. Polymicrobial interactions: impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213.

    PubMed Central  PubMed  Google Scholar 

  • Peters, B.M., Ovchinnikova, E.S., Krom, B.P., Schlecht, L.M., Zhou, H., Hoyer, L.L., Busscher, H.J., van der Mei, H.C., Jabra-Rizk, M.A., and Shirtliff, M.E. 2012b. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology 158, 2975–2986.

    CAS  PubMed  Google Scholar 

  • Phelan, V.V., Liu, W.T., Pogliano, K., and Dorrestein, P.C. 2012. Microbial metabolic exchange-the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35.

    CAS  Google Scholar 

  • Price, L.B., Liu, C.M., Melendez, J.H., Frankel, Y.M., Engelthaler, D., Aziz, M., Bowers, J., Rattray, R., Ravel, J., Kingsley, C., Keim, P.S., Lazarus, G.S., and Zenilman, J.M. 2009. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4, e6462.

    PubMed Central  PubMed  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., and et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos, C., Licht, T.R., Sternberg, C., Krogfelt, K.A., and Molin, S. 2001. Monitoring bacterial growth activity in biofilms from laboratory flow chambers, plant rhizosphere, and animal intestine. Methods Enzymol. 337, 21–42.

    CAS  PubMed  Google Scholar 

  • Ramsey, M.M., Rumbaugh, K.P., and Whiteley, M. 2011. Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog. 7, e1002012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsey, M.M., and Whiteley, M. 2009. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc. Natl. Acad. Sci. USA 106, 1578–1583.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rath, C.M., Alexandrov, T., Higginbottom, S.K., Song, J., Milla, M.E., Fischbach, M.A., Sonnenburg, J.L., and Dorrestein, P.C. 2012. Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations. Anal. Chem. 84, 9259–9267.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rath, C.M., Yang, J.Y., Alexandrov, T., and Dorrestein, P.C. 2013. Data-independent microbial metabolomics with ambient ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 1167–1176.

    CAS  PubMed  Google Scholar 

  • Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., and et al. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 Suppl 1, 4680–4687.

    Google Scholar 

  • Rivers, T.M. 1937. Viruses and Koch’s postulates. J. Bacteriol. 33, 1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers, G.B., Carroll, M.P., Serisier, D.J., Hockey, P.M., Jones, G., and Bruce, K.D. 2004. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J. Clin. Microbiol. 42, 5176–5183.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers, G.B., Hart, C.A., Mason, J.R., Hughes, M., Walshaw, M.J., and Bruce, K.D. 2003. Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J. Clin. Microbiol. 41, 3548–3558.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ronald, A. 2002. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113Suppl 1A, 14S–19S.

    PubMed  Google Scholar 

  • Ross, R. 1898. Report on the cultivation of proteosoma, labbé, in grey mosquitos. Office of the Superintendent of Government Printing, Calcutta, India.

    Google Scholar 

  • Roth, W.J., Kissinger, C.B., McCain, R.R., Cooper, B.R., Marchant-Forde, J.N., Vreeman, R.C., Hannou, S., and Knipp, G.T. 2013. Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing. AAPS J. 15, 763–774.

    CAS  PubMed  Google Scholar 

  • Rotstein, O.D., Pruett, T.L., and Simmons, R.L. 1985. Mechanisms of microbial synergy in polymicrobial surgical infections. Rev. Infect. Dis. 7, 151–170.

    CAS  PubMed  Google Scholar 

  • Safdar, N., Crnich, C.J., and Maki, D.G. 2005. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir. Care 50, 725–739.

    PubMed  Google Scholar 

  • Schillinger, C., Petrich, A., Lux, R., Riep, B., Kikhney, J., Friedmann, A., Wolinsky, L.E., Gobel, U.B., Daims, H., and Moter, A. 2012. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS One 7, e37583.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sibley, C.D., Duan, K., Fischer, C., Parkins, M.D., Storey, D.G., Rabin, H.R., and Surette, M.G. 2008a. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog. 4, e1000184.

    PubMed Central  PubMed  Google Scholar 

  • Sibley, C.D., Parkins, M.D., Rabin, H.R., Duan, K., Norgaard, J.C., and Surette, M.G. 2008b. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 105, 15070–15075.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Socransky, S.S., Haffajee, A.D., Cugini, M.A., Smith, C., and Kent, R.L., Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144.

    CAS  PubMed  Google Scholar 

  • Tampakakis, E., Peleg, A.Y., and Mylonakis, E. 2009. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium. Eukaryotic Cell 8, 732–737.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. 2007. The human microbiome project. Nature 449, 804–810.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Twin, J., Bradshaw, C.S., Garland, S.M., Fairley, C.K., Fethers, K., and Tabrizi, S.N. 2013. The potential of metatranscriptomics for identifying screening targets for bacterial vaginosis. PLoS One 8, e76892.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valm, A.M., Mark Welch, J.L., Rieken, C.W., Hasegawa, Y., Sogin, M.L., Oldenbourg, R., Dewhirst, F.E., and Borisy, G.G. 2011. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl. Acad. Sci. USA 108, 4152–4157.

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Gast, C.J., Walker, A.W., Stressmann, F.A., Rogers, G.B., Scott, P., Daniels, T.W., Carroll, M.P., Parkhill, J., and Bruce, K.D. 2011. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 5, 780–791.

    PubMed Central  PubMed  Google Scholar 

  • Vega, N.M., Allison, K.R., Samuels, A.N., Klempner, M.S., and Collins, J.J. 2013. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl. Acad. Sci. USA 110, 14420–14425.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, J., Qi, J., Zhao, H., He, S., Zhang, Y., Wei, S., and Zhao, F. 2013. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep. 3, 1843–1852.

    PubMed Central  PubMed  Google Scholar 

  • Watanabe, T., Tada, M., Nagai, H., Sasaki, S., and Nakao, M. 1998. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 115, 642–648.

    CAS  PubMed  Google Scholar 

  • Watrous, J., Roach, P., Alexandrov, T., Heath, B.S., Yang, J.Y., Kersten, R.D., van der Voort, M., Pogliano, K., Gross, H., Raaijmakers, J.M., and et al. 2012. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. USA 109, E1743–E1752.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watrous, J.D., Alexandrov, T., and Dorrestein, P.C. 2011. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom 46, 209–222.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watrous, J.D. and Dorrestein, P.C. 2011. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watrous, J.D., Phelan, V.V., Hsu, C.C., Moree, W.J., Duggan, B.M., Alexandrov, T., and Dorrestein, P.C. 2013. Microbial metabolic exchange in 3D. ISME J. 7, 770–780.

    CAS  PubMed  Google Scholar 

  • Weibel, D.B., DiLuzio, W.R., and Whitesides, G.M. 2007. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218.

    CAS  PubMed  Google Scholar 

  • Wessel, A.K., Hmelo, L., Parsek, M.R., and Whiteley, M. 2013. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348.

    CAS  PubMed  Google Scholar 

  • Williams, B.L., McCann, G.F., and Schoenknecht, F.D. 1983. Bacteriology of dental abscesses of endodontic origin. J. Clin. Microbiol. 18, 770–774.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong, S.M., Bernui, M., Shen, H., and Akerley, B.J. 2013. Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc. Natl. Acad. Sci. USA 110, 15413–15418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright, J.B., Lam, K., Buret, A.G., Olson, M.E., and Burrell, R.E. 2002. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 10, 141–151.

    PubMed  Google Scholar 

  • Yaguchi, T., Dwidar, M., Byun, C.K., Leung, B., Lee, S., Cho, Y.K., Mitchell, R.J., and Takayama, S. 2012. Aqueous two-phase system-derived biofilms for bacterial interaction studies. Biomacromolecules 13, 2655–2661.

    CAS  PubMed  Google Scholar 

  • Yamada, M., Ikegami, A., and Kuramitsu, H.K. 2005. Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis. FEMS Microbiol. Lett. 250, 271–277.

    CAS  PubMed  Google Scholar 

  • Yang, J.Y., Phelan, V.V., Simkovsky, R., Watrous, J.D., Trial, R.M., Fleming, T.C., Wenter, R., Moore, B.S., Golden, S.S., Pogliano, K., and Dorrestein, P.C. 2012. Primer on agar-based microbial imaging mass spectrometry. J. Bacteriol. 194, 6023–6028.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao, J., Schloss, P.D., Kalikin, L.M., Carmody, L.A., Foster, B.K., Petrosino, J.F., Cavalcoli, J.D., Van Devanter, D.R., Murray, S., Li, J.Z., Young, V.B., and LiPuma, J.J. 2012. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 109, 5809–5814.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao, L. 2013. The gut microbiota and obesity: from correlation to causality. Nat. Rev. Microbiol. 11, 639–647.

    CAS  PubMed  Google Scholar 

  • Zhu, Y., Dashper, S.G., Chen, Y.Y., Crawford, S., Slakeski, N., and Reynolds, E.C. 2013. Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development. PLoS One 8, e71727.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX, 78712, USA

    Justine L. Murray, Jodi L. Connell, Apollo Stacy, Keith H. Turner & Marvin Whiteley

Authors
  1. Justine L. Murray
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jodi L. Connell
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Apollo Stacy
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Keith H. Turner
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Marvin Whiteley
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Keith H. Turner or Marvin Whiteley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murray, J.L., Connell, J.L., Stacy, A. et al. Mechanisms of synergy in polymicrobial infections. J Microbiol. 52, 188–199 (2014). https://doi.org/10.1007/s12275-014-4067-3

Download citation

  • Received: 03 February 2014

  • Accepted: 06 February 2014

  • Published: 01 March 2014

  • Issue Date: March 2014

  • DOI: https://doi.org/10.1007/s12275-014-4067-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • polymicrobial
  • synergy
  • infection
  • metatranscriptomics
  • quorum sensing
  • imaging mass spectrometry
  • 3D printing
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.232.62.64

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.