Adachi, M., Sako, Y., and Ishida, Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol.
32, 424–432.
CAS
Article
Google Scholar
Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Uni. Sci.
26, 1–20.
Google Scholar
Albermann, S., Linnemannstöns, P., and Tudzynski, B. 2013. Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl. Microbiol. Biotechnol.
97, 2979–2995.
CAS
PubMed
Article
Google Scholar
Aly, A.H., Debbab, A., Kjer, J., and Proksch, P. 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Div.
41, 1–16.
Article
Google Scholar
Ansari, M.W., Trivedi, D.K., Sahoo, R.K., Gill, S.S., and Tuteja, N. 2013. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol. Biochem.
70, 403–410.
CAS
PubMed
Google Scholar
Atzhorn, R., Crozier, A., Wheeler, C.T., and Sandberg, G. 1998. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta
175, 532–538.
Article
Google Scholar
Bal, H.B., Das, S., Dangar, T.K., and Adhya, T.K. 2013. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J. Basic Microbiol. doi: 10.1002/jobm.201200445.
Google Scholar
Barazani, O. and Friedman, J. 1999. Is IAA the major growth factor secreted from plant growth mediating bacteria. J. Chem. Ecol.
25, 2397–2406.
CAS
Article
Google Scholar
Bascom-Slack, C.A., Ma, C., Moore, E., Babbs, E., Fenn, K., Greene, J.S., Hann, B.D., Keehner, J., Kelley-Swift, E.G., Kembaiyan, V., and et al. 2009. Multiple, novel biologically active endophytic actinomycetes isolated from Upper Amazonian rainforests. Microb. Ecol.
58, 374–383.
PubMed
Article
Google Scholar
Bastian, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R., and Bottini, R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul.
24, 7–11.
CAS
Article
Google Scholar
Bhore, S.J., Preveena, J., and Kandasamy, K.I. 2013. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species. Phcog. Res.
5, 134–137.
PubMed Central
PubMed
Article
Google Scholar
Bömke, C., Rojas, M.C., Gong, F., Hedden, P., and Tudzynski, B. 2008. Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl. Environ. Microbiol.
74, 5325–5339.
PubMed Central
PubMed
Article
Google Scholar
Bottini, R., Cassán, F., and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol.
65, 497–503.
CAS
PubMed
Article
Google Scholar
Brader, G., Stephane, C., Birgit, M., Friederike, T., and Angela, S. 2014. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol.
27, 30–37.
CAS
PubMed Central
PubMed
Article
Google Scholar
Castanheira, N., Dourado, A.C., Alves, P.I., Cortés-Pallero, A.M., Delgado-Rodríguez, A.I., Prazeres, Â., Borges, N., Sánchez, C., Crespo, M.T.B., and Fareleira, P. 2014. Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiol. Res. doi. org/10.1016/j.micres.2013.12.010.
Google Scholar
Cerny-Koening, T.A., Faust, J.E., and Rajapakse, N.C. 2004. Role of gibberellin A4 and gibberellin and biosynthesis inhibitors on flowering and stem elongation in Petunia under modified light environments. Hort. Sci.
4, 134–137.
Google Scholar
Christina, A., Christapher, V., and Bhore, S.J. 2013. Endophytic bacteria as a source of novel antibiotics: An overview. Pharmacog. Rev.
7, 11–16.
CAS
Article
Google Scholar
Davicre, J.M. and Achard, P. 2013. Gibberellin signaling in plants. Development
140, 1147–1151.
Article
Google Scholar
Duca, D., Lorv, J., Patten, C.L., Rose, D., and Glick, B.R. 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek doi. 10.1007/s10482-013-0095-y.
Google Scholar
Gaiero, J.R., McCall, C.A., Thompson, K.A., Day, N.J., Best, A.S., and Dunfield, K.E. 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot.
100, 1738–1750.
PubMed
Article
Google Scholar
Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R., and Talon, M. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant
111, 206–211.
Article
Google Scholar
Hamayun, M., Khan, S.A., Khan, A.L., Rehman, G., Sohn, E.Y., Shah, A.A., Kim, S.K., Joo, G.J., and Lee, I.J. 2009. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol.
19, 1244–1249.
CAS
PubMed
Google Scholar
Higginbotham, S.J., Arnold, A.E., Ibañez, A., Spadafora, C., Coley, P.D., and Kursar, T.A. 2013. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE
8, e731–2.
Article
Google Scholar
Hilbert, M., Nostadt, R., and Zuccaro, A. 2013. Exogenous auxin affects the oxidative burst in barley roots colonized by Piriformospora indica. Plant Signal. Behav.
8, E23572/1-E23572–5.
Article
Google Scholar
Hussain, A. and Hasnain, S. 2011. Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J. Microbiol. Biotechnol.
27, 26–5.
Google Scholar
Islam, M.D.R., Sultana, T., Joe, M.M., Yim, W., Cho, J.C., and Sa, T. 2013. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol.
53, 1004–1015.
CAS
PubMed
Article
Google Scholar
Jasim, B., John, C.J., Mathew, J., and Radhakrishnan, E.K. 2013. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul.
71, 1–11.
CAS
Article
Google Scholar
Joo, G.J., Kang, S.M., Hamayun, M., Kim, S.K., Na, C.I., Shin, D.H., and Lee, I.J. 2009. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J. Mcrobiol.
47, 167–171.
CAS
Article
Google Scholar
Joo, G.J., Kim, Y.M., Lee, I.J., Song, K.S., and Rhee, I.K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett.
26, 487–491.
CAS
PubMed
Article
Google Scholar
Kang, S.M., Khan, A.L., Waqas, M., You, Y.H., Kim, J.H., Kim, J.G., Hamayun, M., and Lee, I.J. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. doi.10.1080/17429145.2014.894587.
Google Scholar
Khan, Z. and Doty, S.L. 2009. Characterization of bacterial endophytes of sweet potato plants. Plant Soil
322, 1–7.
Article
Google Scholar
Kilbane, J.J., Daram, A., Abbasian, J., and Kayser, K.J. 2002. Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem. Biophys. Res. Commun.
297, 242–248.
CAS
PubMed
Article
Google Scholar
Lata, H., Li, X.C., Silva, B., Moraes, R.M., and Halda-Alija, L. 2006. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Culture
85, 353–359.
CAS
Article
Google Scholar
Lee, S., Flores-Encarnacion, M., Contreras-Zentella, M., Garcia, F.L., Escamilla, J.E., and Kennedy, C. 2004. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J. Bacteriol.
186, 5384–5391.
CAS
PubMed Central
PubMed
Article
Google Scholar
Lee, I.J., Foster, K., and Morgan, P.W. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol.
116, 1003–1011.
CAS
PubMed Central
PubMed
Article
Google Scholar
Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P., and Van Gijsegem, F. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol.
162, 328–334.
CAS
PubMed Central
PubMed
Google Scholar
Nagata, S., Yamaji, K., Nomura, N., and Ishimoto, H. 2014. Root endophytes enhance stress-tolerance of Cicuta virosa L. growing in a mining pond of eastern Japan. Plant Speci. Biol. doi: 10.1111/1442-1984.12039.
Google Scholar
Naveed, M., Mitter, B., Yousaf, S., Pastar, M., Afzal, M., and Sessitsch, A. 2013. The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol. Ferti. Soils
50, 249–262.
Article
Google Scholar
Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol.
68, 3795–3801.
CAS
PubMed Central
PubMed
Article
Google Scholar
Qin, S., Xing, K., Jiang, J.H., Xu, L.H., and Li, W.J. 2011. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol.
89, 457–473.
CAS
PubMed
Article
Google Scholar
Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., Greer, C., Espino, L., Doty, S.L., and Rodriguez, R.J. 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE
6, e14823.
Article
Google Scholar
Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J., and Dowling, D.N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Let.
278, 1–9.
CAS
Article
Google Scholar
Sambrook, J. and Russel, D.W. 2001. Molecular cloning, (third ed.), Cold Spring Harbor, New York, N.Y., USA.
Google Scholar
Schulz, B. and Boyle, C. 2005. The endophytic continuum. Mycological. Res.
109, 661–686.
Article
Google Scholar
Selvakumar, G., Kim, K., Hu, S., and Sa, T. 2014. Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In Ahmad, P. and Wani, M.R. (eds.), Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, pp. 115–144. Springer New York, USA.
Chapter
Google Scholar
Sheng, X.F., Xia, J.J., Jiang, C.Y., He, L.Y., and Qian, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Poll.
156, 1164–1170.
CAS
Article
Google Scholar
Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev.
31, 425–448.
CAS
PubMed
Article
Google Scholar
Strobel, G., Daisy, B., Castillo, U., and Harper, J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod.
67, 257–268.
CAS
PubMed
Article
Google Scholar
Supaphon, P., Phongpaichit, S., Rukachaisirikul, V., and Sakayaroj, J. 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE
8, e72520.
Article
Google Scholar
Tehler, A. 1995. Morphological data, molecular data, and total evidence in phylogenetic analysis. Can., J. Bot.
73, 667–676.
Article
Google Scholar
Thepsukhon, A., Choonluchanon, S., Tajima, S., Nomura, M., and Ruamrungsri, S. 2013. Identification of endophytic bacteria associated with N2 fixation and indole acetic acid synthesis as growth promoters in Curcuma alismatifolia gagnep. J. Plant Nutri.
36, 33–39.
Article
Google Scholar
Tivendale, N.D., Ross, J.J., and Cohen, J.D. 2014. The shifting paradigms of auxin biosynthesis. Trends Plant Sci.
19, 44–51.
CAS
PubMed
Article
Google Scholar
Troncoso, C., González, X., Bömke, C., Tudzynski, B., Gong, F., Hedden, P., and Rojas, M.C. 2010. Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochem.
71, 1322–1331.
CAS
Article
Google Scholar
Verma, A., Kukreja, K., Pathak, D.V., Suneja, S., and Narula, N. 2001. In vitro production of plant growth regulators (PGRs) by Azorobacter chroococcum. Indian, J. Microbiol.
41, 305–307.
Google Scholar
Weyens, N., Gielen, M., Beckers, B., Boulet, J., van der Lelie, D., Taghavi, S., Carleer, R., and Vangronsveld, J. 2014. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Plant Biol. doi: 10.1111/plb.12141.
Google Scholar
Xu, X., van Lammeren, A.A.M., Vermeer, E., and Vreugdenhil, D. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol.
117, 575–584.
CAS
PubMed Central
PubMed
Article
Google Scholar
Yanni, Y.G., Rizk, R.Y., Abd El-Fattah, F.K., Squartini, A., Corich, V., Giacomini, A., de Bruijn, F., Rademaker, J., Maya-Flores, J., Ostrom, P., and et al. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol.
28, 845–870.
CAS
Google Scholar
Yu, F.B., Shan, S.D., Luo, L.P., Guan, L.B., and Qin, H. 2013. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J. Environ. Sci. Health, B.
48, 198–207.
CAS
Article
Google Scholar
Zin, N.M., Sarmin, N.I., Ghadin, N., Basri, D.F., Sidik, N.M., Hess, W.M., and Strobel, G.A. 2007. Bioactive endophytic streptomycetes from the Malay Pensinsula. FEMS Microbiol. Lett.
274, 83–88.
CAS
PubMed
Article
Google Scholar