Skip to main content
Log in

Synthetic lethal screen of NAA20, a catalytic subunit gene of NatB N-terminal acetylase in Saccharomyces cerevisiae

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Saccharomyces cerevisiae NatB N-terminal acetylase contains a catalytic subunit Naa20 and an auxiliary subunit Naa25. To elucidate the cellular functions of the NatB, we utilized the Synthetic Genetic Array to screen for genes that are essential for cell growth in the absence of NAA20. The genome-wide synthetic lethal screen of NAA20 identified genes encoding for serine/threonine protein kinase Vps15, 1,3-beta-glucanosyltransferase Gas5, and a catabolic repression regulator Mig3. The present study suggests that the catalytic activity of the NatB N-terminal aceytase is involved in vacuolar protein sorting and cell wall maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnesen, T., Gromyko, D., Kagabo, D., Betts, M.J., Starheim, K.K., Varhaug, J.E., Anderson, D., and Lillehaug, J.R. 2009. A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa-16p-hNaa10p (hNat2-hArd1). BMC Biochem. 10, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold, R.J., Polevoda, B., Reilly, J.P., and Sherman, F. 1999. The action of N-terminal acetyltransferases on yeast ribosomal proteins. J. Biol. Chem. 274, 37035–37040.

    Article  PubMed  CAS  Google Scholar 

  • Behnia, R., Panic, B., Whyte, J.R., and Munro, S. 2004. Targeting of the Arf-like GTPase Arl3p to the golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Bonangelino, C.J., Chavez, E.M., and Bonifacino, J.S. 2002. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell. 13, 2486–2501.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caesar, R. and Blomberg, A. 2004. The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway. J. Biol. Chem. 279, 38532–38543.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, J.A., Keyes, B.E., Ng, Y.P., Freeman, C.O., and Burke, D.J. 2006. Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae. Genetics 172, 53–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Forte, G.M., Pool, M.R., and Stirling, C.J. 2011. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol. 9, e1001073.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Helbig, A.O., Rosati, S., Pijnappel, P.W., van Breukelen, B., Timmers, M.H., Mohammed, S., Slijper, M., and Heck, A.J. 2010. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11, 685.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holubarova, A., Muller, P., and Svoboda, A. 2000. A response of yeast cells to heat stress: Cell viability and the stability of cytoskeletal structures. Scripta Medica (BRNO). 73, 381–392.

    CAS  Google Scholar 

  • Hwang, C.S., Shemorry, A., Auerbach, D., and Varshavsky, A. 2010a. The N-end rule pathway is mediated by a complex of the Ringtype Ubr1 and Hect-type Ufd4 ubiquitin ligases. Nat. Cell Biol. 12, 1177–1185.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hwang, C.S., Shemorry, A., and Varshavsky, A. 2010b. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and et al. 2004. A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.

    Article  PubMed  CAS  Google Scholar 

  • Jornvall, H. 1975. Acetylation of protein N-terminal amino groups structural observations on alpha-amino acetylated proteins. J. Theor. Biol. 55, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kalvik, T.V. and Arnesen, T. 2013. Protein N-terminal acetyltransferases in cancer. Oncogene 32, 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.M. and Hwang, C.S. 2014. Crosstalk between the Arg/N-end and Ac/N-end rule. Cell Cycle 13, 1366–1367.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.K., Kim, R.R., Oh, J.H., Cho, H., Varshavsky, A., and Hwang, C.S. 2014. The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158–169.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., and Hirano, H. 2003. N-terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch. Biochem. Biophys. 409, 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, Y., Takaoka, M., Tanaka, S., Sassa, H., Tanaka, K., Polevoda, B., Sherman, F., and Hirano, H. 2000. N(alpha)-acetylation and proteolytic activity of the yeast 20 S proteasome. J. Biol. Chem. 275, 4635–4639.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J.A. and Gasch, A.P. 2012. Natural variation in the yeast glucose-signaling network reveals a new role for the Mig3p transcription factor. G3 (Bethesda) 2, 1607–1612.

    Article  CAS  Google Scholar 

  • Lindmo, K., Brech, A., Finley, K.D., Gaumer, S., Contamine, D., Rusten, T.E., and Stenmark, H. 2008. The Pi 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy 4, 500–506.

    Article  PubMed  CAS  Google Scholar 

  • Logan, M.R., Nguyen, T., Szapiel, N., Knockleby, J., Por, H., Zadworny, M., Neszt, M., Harrison, P., Bussey, H., Mandato, C.A., and et al. 2008. Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7. BMC Genomics 9, 336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monastyrska, I., Rieter, E., Klionsky, D.J., and Reggiori, F. 2009. Multiple roles of the cytoskeleton in autophagy. Biol. Rev. Camb. Philos. Soc. 84, 431–448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mounier, N. and Arrigo, A.P. 2002. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress Chaperones 7, 167–176.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polevoda, B., Cardillo, T.S., Doyle, T.C., Bedi, G.S., and Sherman, F. 2003. Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278, 30686–30697.

    Article  PubMed  CAS  Google Scholar 

  • Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. 1999. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 18, 6155–6168.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polevoda, B. and Sherman, F. 2003. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Ragni, E., Fontaine, T., Gissi, C., Latge, J.P., and Popolo, L. 2007. The gas family of proteins of Saccharomyces cerevisiae: Characterization and evolutionary analysis. Yeast 24, 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Savchenko, A., Krogan, N., Cort, J.R., Evdokimova, E., Lew, J.M., Yee, A.A., Sanchez-Pulido, L., Andrade, M.A., Bochkarev, A., Watson, J.D., and et al. 2005. The shwachman-bodian-diamond syndrome protein family is involved in RNA metabolism. J. Biol. Chem. 280, 19213–19220.

    Article  PubMed  CAS  Google Scholar 

  • Scott, D.C., Monda, J.K., Bennett, E.J., Harper, J.W., and Schulman, B.A. 2011. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334, 674–678.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Setty, S.R., Strochlic, T.I., Tong, A.H., Boone, C., and Burd, C.G. 2004. Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat. Cell Biol. 6, 414–419.

    Article  PubMed  CAS  Google Scholar 

  • Shemorry, A., Hwang, C.S., and Varshavsky, A. 2013. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540–551.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194, 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Singer, J.M. and Shaw, J.M. 2003. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc. Natl. Acad. Sci. USA 100, 7644–7649.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stack, J.H., DeWald, D.B., Takegawa, K., and Emr, S.D. 1995. Vesiclemediated protein transport: Regulatory interactions between the Vps15 protein kinase and the Vps34 Ptdins 3-kinase essential for protein sorting to the vacuole in yeast. J. Cell Biol. 129, 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Starheim, K.K., Gevaert, K., and Arnesen, T. 2012. Protein N-terminal acetyltransferases: When the start matters. Trends Biochem. Sci. 37, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Tong, A.H. and Boone, C. 2006. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313, 171–192.

    PubMed  CAS  Google Scholar 

  • Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C., Elosegui-Artola, A., Kim, D.S., De Juan-Pardo, E., Demeyer, K., Hole, K., Larrea, E., and et al. 2012. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. USA 109, 12449–12454.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Welsem, T., Frederiks, F., Verzijlbergen, K.F., Faber, A.W., Nelson, Z.W., Egan, D.A., Gottschling, D.E., and van Leeuwen, F. 2008. Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol. Cell. Biol. 28, 3861–3872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshavsky, A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345.

    Article  CAS  PubMed Central  Google Scholar 

  • Westholm, J.O., Nordberg, N., Muren, E., Ameur, A., Komorowski, J., and Ronne, H. 2008. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2, and Mig3. BMC Genomics 9, 601.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Sang Hwang.

Additional information

These authors contributed equally this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KE., Ahn, JY., Kim, JM. et al. Synthetic lethal screen of NAA20, a catalytic subunit gene of NatB N-terminal acetylase in Saccharomyces cerevisiae . J Microbiol. 52, 842–848 (2014). https://doi.org/10.1007/s12275-014-3694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3694-z

Keywords

Navigation