Skip to main content
Log in

A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adone, R., Ciuchini, F., Marianelli, C., Tarantino, M., Pistoia, C., Marcon, G., Petrucci, P., Francia, M., Riccardi, G., and Pasquali, P. 2005. Protective properties of rifampin-resistant rough mutants of Brucella melitensis. Infect. Immun. 73, 4198–4312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson, J.D. and Smith, H. 1965. The metabolism of erythritol in Brucella abortus. J. Gen. Microbiol. 38, 109–124.

    Article  CAS  PubMed  Google Scholar 

  • Ashford, D.A., di Pietra, J., Lingappa, J., Woods, C., Noll, H., Neville, B., Weyant, R., Bragg, S.L., Spiegel, R.A., Tappero, J., and Perkins, B.A. 2004. Adverse events in humans associated with accidental exposure to the livestock brucellosis vaccine RB51. Vaccine 22, 3435–3439.

    Article  CAS  PubMed  Google Scholar 

  • Berkelman, R.L. 2003. Human illness associated with use of veterinary vaccines. Clin. Infect. Dis. 37, 407–414.

    Article  PubMed  Google Scholar 

  • Burkhardt, S., Jiménez de Bagüés, M.P., Liautard, J.P., and Köhler, S. 2005. Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infect. Immun. 73, 6782–6872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carvalho, L.H., Sano, G., Hafalla, J.C., Morrot, A., Curotto de Lafaille, M.A., and Zavala, F. 2002. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat. Med. 8, 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Castaño, M.J. and Solera, J. 2009. Chronic brucellosis and persistence of Brucella melitensis DNA. J. Clin. Microbiol. 7, 2084–2089.

    Article  Google Scholar 

  • Cheville, N.F., Olsen, S.C., Jensen, A.E., Stevens, M.G., Palmer, M.V., and Florance, A.M. 1996. Effects of age at vaccination on efficacy of Brucella abortus strain RB51 to protect cattle against brucellosis. Am., J. Vet. Res. 57, 1153–1159.

    CAS  Google Scholar 

  • Crasta, O.R., Folkerts, O., Fei, Z., Mane, S.P., Evans, C., Martino-Catt, S., Bricker, B., Yu, G., Du, L., and Sobral, B.W. 2008. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS ONE 3, e2193.

    Article  Google Scholar 

  • Delrue, R.M., Lestrate, P., Tibor, A., Letesson, J.J., and De Bolle, X. 2004. Brucella pathogenesis, genes identified from random largescale screens. FEMS Microbiol. Lett. 231, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Elzer, P.H., Enright, F.M., Colby, L., Hagius, S.D., Walker, J.V., Fatemi, M.B., Kopec, J.D., Beal, V.C.Jr., and Schurig, G.G. 1998. Protection against infection and abortion induced by virulent challenge exposure after oral vaccination of cattle with Brucella abortus strain RB51. Am. J. Vet. Res. 59, 1575–1583.

    CAS  PubMed  Google Scholar 

  • Elzer, P.H., Hagius, S.D., Davis, D.S., DelVecchio, V.G., and Enright, F.M. 2002. Characterization of the caprine model for ruminant brucellosis. Vet. Microbiol. 90, 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Eoh, H., Jeon, B.Y., Kim, Z., Kim, S.C., and Cho, S.N. 2010. Expression and validation of D-erythrulose 1-phosphate dehydrogenase from Brucella abortus: a diagnostic reagent for bovine brucellosis. J. Vet. Diagn. Invest. 22, 524–554.

    Article  PubMed  Google Scholar 

  • Ficht, T.A. 2003. Intracellular survival of Brucella: defining the link with persistence. Vet. Microbiol. 92, 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Godfroid, J., Cloeckaert, A., Liautard, J.P., Kohler, S., Fretin, D., Walravens, K., Garin-Bastuji, B., and Letesson, J.J. 2005. From the discovery of the Malta fever’s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a reemerging zoonosis. Vet. Res. 36, 313–326.

    Article  PubMed  Google Scholar 

  • Goel, D. and Bhatnagar, R. 2012. Intradermal immunization with outer membrane protein 25 protects Balb/c mice from virulent B. abortus 544. Mol. Immunol. 51, 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Golding, B., Scott, D.E., Scharf, O., Huang, L.Y., Zaitseva, M., Lapham, C., Eller, N., and Golding, H. 2001. Immunity and protection against Brucella abortus. Microbes Infect. 3, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Hamdy, M.E., El-Gibaly, S.M., and Montasser, A.M. 2002. Comparison between immune responses and resistance induced in BALB/c mice vaccinated with RB51 and Rev.1 vaccines and challenged with Brucella melitensis bv. 3. Vet. Microbiol. 88, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Lacerda, T.L., Cardoso, P.G., Augusto de Almeida, L., Camargo, I.L., Afonso, D.A., Trant, C.C., Macedo, G.C., Campos, E., Cravero, S.L, Salcedo, S.P., and et al. 2010. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice. Vaccine 28, 5627–5634.

    Article  PubMed  Google Scholar 

  • Liu, B., Teng, D., Wang, X., Yang, Y., and Wang, J. 2012. Expression of the soybean allergenic protein P34 in Escherichia coli and its indirect ELISA detection method. Appl. Microbiol. Biotechnol. 94, 1337–1382.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, M.E. 1967. Metabolic characterization of the genus Brucella. VI. Growth stimulation by i-erythritol compared with strain virulence for guinea pigs. J. Bacteriol. 93, 996–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriyón, I., Grilló, M.J., Monreal, D., González, D., Marín, C., López-Goñi, I., Mainar-Jaime, R.C., Moreno, E., and Blasco, J.M. 2004. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet. Res. 35, 1–38.

    Article  PubMed  Google Scholar 

  • Nicoletti, P. 1990. Vaccination against Brucella. Adv. Biotechnol. Processes 13, 147–215.

    CAS  PubMed  Google Scholar 

  • Olsen, S.C., Bricker, B., Palmer, M.V., Jensen, A.E., and Cheville, N.F. 1999. Responses of cattle to two dosages of Brucella abortus strain RB51: serology, clearance and efficacy. Res. Vet. Sci. 66, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Poester, F.P., Gonçalves, V.S., Paixão, T.A., Santos, R.L., Olsen, S.C., Schurig, G.G., and Lage, A.P. 2006. Efficacy of strain RB51 vaccine in heifers against experimental brucellosis. Vaccine 24, 5327–5361.

    Article  CAS  PubMed  Google Scholar 

  • Sangari, F.J., Aguero, J., and Garcia-Lobo, J.M. 2000. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146, 487–495.

    CAS  PubMed  Google Scholar 

  • Sangari, F.J., Grilló, M.J., Jiménez De Bagüés, M.P., González-Carreró, M.I., García-Lobo, J.M., Blasco, J.M., and Agüero, J. 1998. The defect in the metabolism of erythritol of the Brucella abortus B19 vaccine strain is unrelated with its attenuated virulence in mice. Vaccine 16, 1640–1645.

    Article  CAS  PubMed  Google Scholar 

  • Sathiyaseelan, J., Goenka, R., Parent, M., Benson, R.M., Murphy, E.A., Fernandes, D.M., Foulkes, A.S., and Baldwin, C.L. 2006. Treatment of Brucella susceptible mice with IL-12 increases primary and secondary immunity. Cell. Immunol. 243, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Schurig, G.G., Roop, R.M., Bagchi, T., Boyle, S., Buhrman, D., and Sriranganathan, N. 1991. Biological properties of RB51 a stable rough strain of Brucella abortus. Vet. Microbiol. 28, 171–259.

    Article  CAS  PubMed  Google Scholar 

  • Schurig, G.G., Sriranganathan, N., and Corbel, M.J. 2002. Brucellosis vaccines: past, present and future. Vet. Microbiol. 90, 479–496.

    Article  CAS  PubMed  Google Scholar 

  • Sperry, J.F. and Robertson, D.C. 1975. Inhibition of growth by erythritol catabolism in Brucella abortus. J. Bacteriol. 124, 391–397.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Bai, Y., Qu, Q., Xu, J., Chen, Y., Zhong, Z., Qiu, Y., Wang, T., Du, X., Wang, Z., and et al. 2011. The 16M ΔvjbR as an ideal live attenuated vaccine candidate for differentiation between Brucella vaccination and infection. Vet. Microbiol. 151, 354–362.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangfu Chen.

Additional information

These authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yin, S., Guo, F. et al. A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection. J Microbiol. 52, 681–688 (2014). https://doi.org/10.1007/s12275-014-3689-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3689-9

Keywords

Navigation