Skip to main content
Log in

Prediction of Bacterial microRNAs and possible targets in human cell transcriptome

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Recent studies have examined gene transfer from bacteria to humans that would result in vertical inheritance. Bacterial DNA appears to integrate into the human somatic genome through an RNA intermediate, and such integrations are detected more frequently in tumors than normal samples and in RNA than DNA samples. Also, vertebrate viruses encode products that interfere with the RNA silencing machinery, suggesting that RNA silencing may indeed be important for antiviral responses in vertebrates. RNA silencing in response to virus infection could be due to microRNAs encoded by either the virus or the host. We hypothesized that bacterial expression of RNA molecules with secondary structures is potentially able to generate miRNA molecules that can interact with the human host mRNA during bacterial infection. To test this hypothesis, we developed a pipelinebased bioinformatics approach to identify putative micro-RNAs derived from bacterial RNAs that may have the potential to regulate gene expression of the human host cell. Our results suggest that 68 bacterial RNAs predicted from 37 different bacterial genomes have predicted secondary structures potentially able to generate putative microRNAs that may interact with messenger RNAs of genes involved in 47 different human diseases. As an example, we examined the effect of transfecting three putative microRNAs into human embryonic kidney 293 (HEK293) cells. The results show that the bacterially derived microRNA sequence can significantly regulate the expression of the respective target human gene. We suggest that the study of these predicted microRNAs may yield important clues as to how the human host cell processes involved in human diseases like cancer, diabetes, rheumatoid arthritis, and others may respond to a particular bacterial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  • Akira S. and Takeda K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Alexiadis V., Waldmann T., Andersen J., Mann M., Knippers R., and Gruss C. 2000. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev. 14, 1308–1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Ambros V. 2004. The functions of animal microRNAs. Nature 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Azcarate-Peril M.A., Sikes M., and Bruno-Barcena J.M. 2011. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am. J. Physiol. Gastrointest. Liver Physiol. 301, G401–424.

    Article  Google Scholar 

  • Baulcombe D. 2004. RNA silencing in plants. Nature 431, 356–363.

    Article  CAS  PubMed  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., and Wheeler D.L. 2008. GenBank. Nucleic Acids Res. 36, D25–30.

    Article  Google Scholar 

  • Cai X., Lu S., Zhang Z., Gonzalez C.M., Damania B., and Cullen B.R. 2005. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccleston K., Collins L., and Higgins S.P. 2008. Primary syphilis. Int. J. STD AIDS 19, 145–151.

    Article  PubMed  Google Scholar 

  • Ebby O.L. 2005. Community-acquired pneumonia: from common pathogens to emerging resistance. Emerg. Med. Pract. v7n12.

    Google Scholar 

  • Farrar J.J., Yen L.M., Cook T., Fairweather N., Binh N., Parry J., and Parry C.M. 2000. Tetanus. J. Neurol. Neurosurg. Psychiatry 69, 292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., and Mello C.C. 1998. Potent and specific genetic interference by double-stranded RNA in C. elegans. Nature 391, 806–811.

    Article  CAS  Google Scholar 

  • Freeman V.J. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61, 675–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu G.K., Grosveld G., and Markovitz D.M. 1997. DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV-2 enhancer. Proc. Natl. Acad. Sci. USA 94, 1811–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannella R.A. 1996. Salmonella, chap. 21 pp. 295–302. In Baron S. (ed.), Medical Microbiology, 4th ed. University of Texas Medical Branch. Galveston, Tx., USA.

    Google Scholar 

  • Gilmore T.D. 1999. The Rel/NF-κB signal transduction pathway: Introduction. Oncogene 18, 6842–6844.

    Article  CAS  PubMed  Google Scholar 

  • Hamosh A., Scott A.F., Amberger J.S., Bocchini C.A., and McKusick V.A. 2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–517.

    Article  Google Scholar 

  • Han J., Lee Y., Yeom K.H., Kim Y.K., Jin H., and Kim V.N. 2004 The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda H., Inazawa J., Nishida J., Yazaki Y., and Hirai H. 1994. Molecular cloning, characterization, and chromosomal localization of a novel protein-tyrosine phosphatase, HPTP eta. Blood 84, 4186–4194.

    CAS  PubMed  Google Scholar 

  • Huerta-Cepas J., Dopazo H., Dopazo J., and Gabaldon T. 2007. The human phylome. Genome Biol. 8, R109.

    Article  Google Scholar 

  • Huttenhofer A., Kiefmann M., Meier-Ewert S., O’Brien J., Lehrach H., Bachellerie J.P., and Brosius J. 2001. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBRO J. 20, 2943–2953.

    Article  CAS  Google Scholar 

  • Kavanaugh G.M., Wise-Draper T.M., Morreale R.J., Morrison M.A., Gole B., Schwemberger S., Tichy E.D., Lu L., Babcock G.F., Wells J.M., and et al. 2011. The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Res. 39, 7465–7476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., and Duke F. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurreck J. 2006. siRNA efficiency: structure or sequence-That is the question. J. Biomed. Biotechnol. 83757, 1–7.

    Article  Google Scholar 

  • Lander E.S., Linton L.M., Birren B., Nusbaum C., and Zody M.C. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Marchesi J.R., Dutilh B.E., Hall N., Peters W.H.M., Roelofs R., Boleij A., and Tjalsma H. 2011. Towards the human colorectal cancer microbiome. PLoS ONE 6, e20447.

    Article  Google Scholar 

  • Marker C., Zemann A., Terhörst T., Kiefmann M.J.P., Kastenmayer Green P., Bachellerie-Brosius J.P., and Huttenhofer A. 2002. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr. Biol. 12, 2002–2013.

    Article  CAS  PubMed  Google Scholar 

  • Markham N.R. and Zuker M. 2008. UNAFold: software for nucleic acid folding and hybridization, chap. 1, pp. 3–31. In Keith J.M. (ed), Bioinformatics, volume II. Structure, function and applications, number 453 in Methods in Molecular Biology. Human Press. Totowa, N.J., USA.

    Google Scholar 

  • Marshall B.J. and Warren J.R. 1983. Unidentified curved bacillus on gastric epithelium in active chronic gastritis. Lancet 1, 1273–1275.

    Google Scholar 

  • Marshall B.J. and Warren J.R. 1984. Unidentified curved bacilli in the stomach patients with gastritis and peptic ulceration. Lancet 1, 1311–1315.

    Article  CAS  PubMed  Google Scholar 

  • Miller W.G., Parker C.T., Rubenfield M., Mendz G.L., and Wösten M.M.S.M. 2007. The complete genome sequence and analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE 2, e1358.

    Article  Google Scholar 

  • Naimi T.S., Wicklund J.H., Olsen S.J., Krause G., Wells J.G., Bartkus J.M., Boxrud D.J., Sullivan M., Kassenborg H., Besser J.M., and et al. 2003. Concurrent outbreaks of Shigella sonnei and enterotoxigenic Escherichia coli infections associated with parsley: implications for surveillance and control of foodborne illness. J. Food Prot. 66, 535–541.

    PubMed  Google Scholar 

  • Okamoto K., Makino S., Yoshikawa Y., Takaki A., Nagatsuka Y., Ota M., Tamiya G., Kimura A., Bahram S., and Inoko H. 2003. Identification of I-kappa-BL as the second major histocompatibility complex-linked susceptibility locus for rheumatoid arthritis. Am. J. Hum. Genet. 72, 303–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grasser F.A., van Dyk L.F., Ho C.K., Shuman S., and Chien M. 2005. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer S., Zavolan M., Grässer F.A., Chien M., Russo J.J., Ju J., John B., Enright A.J., Marks D., Sander C., and et al. 2004. Identification of virus-encoded microRNAs. Science 304, 734–736.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., and Ruvkun G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Riley D.R., Sieber K.B., Robinson K.M., White J.R., Ganesan A., Nourbakhsh S., and Dunning Hotopp J.C. 2013. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput. Biol. 9, e1003107.

    Article  Google Scholar 

  • Ruivenkamp C.A., Wezel T., Zanon C., Stassen A.P.M., Vlcek C., Csikos T., Klous A.M., Tripodis N., Perrakis A., Boerrigter L., and et al. 2002. Ptprj is a candidate for the mouse coloncancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat. Genet. 31, 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Saetrom P., Sneve R., Kristiansen K.I., Snove O.Jr., Grunfeld T., Rognes T., and Seeberg E. 2005. Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. Nucleic Acids Res. 33, 3263–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samols M.A., Hu J., Skalsky R.L., and Renne R. 2005. Cloning and identification of a microRNA cluster within the latencyassociated region of Kaposi’s sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki S., Takeshita F., Okuda K., and Ishii N. 2001. Mycobacterium leprae and leprosy: a compendium. Microbiol. Immunol. 45, 729–736.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan C.S., Grundhoff A.T., Tevethia S., Pipas J.M., and Ganem D. 2005. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686.

    Article  CAS  PubMed  Google Scholar 

  • Talya K., Tzvi T., Yoram K., Yedidya G., Colin D., and Vitaly C. 2001. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98, 1871–1876.

    Article  Google Scholar 

  • Voinnet O. 2005. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206–220.

    Article  CAS  PubMed  Google Scholar 

  • Von Lindern M., Fornerod M., and Soekarman N. 1993. Translocation t(6;9) in acute non-lymphocytic leukaemia results in the formation of a DEK-CAN fusion gene. Baillieres Clin. Haematol. 5, 857–879.

    Article  Google Scholar 

  • Wightman B., Ha I., and Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.

    Article  CAS  Google Scholar 

  • Zhang R., LiPuma J.J., and Gonzalez C.F. 2009. Two type IV secretion systems with different functions in Burkholderia cenocepacia K56-2. Microbiology 155, 4005–4013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shmaryahu.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmaryahu, A., Carrasco, M. & Valenzuela, P.D. Prediction of Bacterial microRNAs and possible targets in human cell transcriptome. J Microbiol. 52, 482–489 (2014). https://doi.org/10.1007/s12275-014-3658-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3658-3

Keywords

Navigation