Isolation of Paenibacillus pinesoli sp. nov. from forest soil in Gyeonggi-Do, Korea

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using a new culture method for unculturable soil bacteria, strain NB5T was isolated from forest soil at Kyonggi University, and characterized taxonomically on the basis of 16S rRNA gene sequence as well as phenotypic and chemotaxonomic characteristics. The novel strain was a Gram- and catalase-positive, rod-shaped bacterium, which grew in the pH range 6.0–9.5 (optimum, 6.5–9.5) and at temperatures between 15°C and 45°C (optimum, 25–40°C). Growth was possible at 0–5% NaCl (optimum, 0% to 3%) in nutrient, Luria-Bertani, and trypticase soy broths (TSB), as well as R2A medium (with optimal growth in TSB). A phylogenetic analysis of the 16S rRNA gene sequence showed that the novel strain was affiliated with the genus Paenibacillus and had 96.8% and 96.5% similarity to P. nanensis MX2-3T and P. agaridevorans DSM 1355T, respectively. The predominant menaquinone in NB5T was MK-7; the major fatty acids were anteiso-C15:0 and iso-C16:0; and the DNA G+C content was 54.5 mol%. We propose this strain as a novel species of the genus Paenibacillus, and suggest the name Paenibacillus pinesoli sp. nov. (type strain, KACC 17472T=KEMB 9005-025T=JCM 19203T).

This is a preview of subscription content, access via your institution.

References

  1. Alvarez, V.M., von der Weid, I., Seldin, L., and Santos, A.L.S. 2006. Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett. Appl. Microbiol. 43, 625–630.

    PubMed  Article  CAS  Google Scholar 

  2. Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.

    PubMed  Article  CAS  Google Scholar 

  3. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35, 1044–1051.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  4. Berge, O., Guinebretière, M.H., Achouak, W., Normand, P., and Heulin, T. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52, 607–616.

    PubMed  CAS  Google Scholar 

  5. Bloemberg, G.V. and Lugtenberg, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350.

    PubMed  Article  CAS  Google Scholar 

  6. Choi, K.K., Park, C.W., Kim, S.Y., Lyoo, W.S., Lee, S.H., and Lee, J.W. 2004. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 14, 1009–1013.

    CAS  Google Scholar 

  7. Chou, J.H., Chou, Y.J., Lin, K.Y., Sheu, S.Y., Sheu, D.S., Arun, A.B., Young, C.C., and Chen, W.M. 2007. Paenibacillus fonticola sp. nov., isolated from a warm spring. Int. J. Syst. Evol. Microbiol. 57, 1346–1350.

    PubMed  Article  CAS  Google Scholar 

  8. Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Doetsch, R.N. 1981. Determinative methods of light microscopy, In Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G. (eds.). Manual of Methods for General Bacteriology, pp. 21–33. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  10. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  11. Forbes, L. 1981. Rapid flagella staining. J. Clin. Microbiol. 13, 807–809.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Girardin, H., Albagnac, C., Dargaignaratz, C., Nguyen-The, C., and Carlin, F. 2002. Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum. J. Food Prot. 65, 806–813.

    PubMed  CAS  Google Scholar 

  13. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  14. Jin, H.J., Lv, J., and Chen, S.F. 2011. Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int. J. Syst. Evol. Microbiol. 61, 767–771.

    PubMed  Article  CAS  Google Scholar 

  15. Johnson, T.R. and Case, C.L. 2007. Laboratory Experiments in Microbiology (8th ed.), pp. 141–143. Pearson Education, Inc., San Francisco, California, USA.

    Google Scholar 

  16. Kempf, M.J., Chen, F., Kern, R., and Venkateswaran, K. 2005. Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5, 391–405.

    PubMed  Article  CAS  Google Scholar 

  17. Khianngam, S., Akaracharanya, A., Tanasupawat, S., Lee, K.C., and Lee, J.S. 2009. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol. 59, 564–568.

    PubMed  Article  CAS  Google Scholar 

  18. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., and et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    PubMed  Article  CAS  Google Scholar 

  19. Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886.

    Article  CAS  Google Scholar 

  20. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.

    Article  CAS  Google Scholar 

  21. Konishi, J. and Maruhashi, K. 2003. 2-(2′-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl. Microbiol. Biotechnol. 62, 356–361.

    PubMed  Article  CAS  Google Scholar 

  22. Mehlen, A., Goeldner, M., Ried, S., Stindl, S., Ludwig, W., and Schleifer, K.H. 2004. Development of a fast DNA-DNA hybridization method based on melting profiles in microplates. Syst. Appl. Microbiol. 27, 689–695.

    PubMed  Article  CAS  Google Scholar 

  23. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  24. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  25. Mishra, A.M., Lagier, J.C., Rivet, R., Raoult, D., and Fournier, P.E. 2012. Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand. Genomic Sci. 7, 70–81.

    Article  CAS  Google Scholar 

  26. Nakamura, L.K. 1996. Paenibacillus apiarius sp. nov. Int. J. Syst. Bacteriol. 46, 688–693.

    PubMed  Article  CAS  Google Scholar 

  27. Nielsen, P. and Sørensen, J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22, 183–192.

    Article  CAS  Google Scholar 

  28. Park, M.J., Kim, H.B., An, D.S., Yang, H.C., Oh, S.T., Chung, H.J., and Yang, D.C. 2007. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 57, 146–150.

    PubMed  Article  CAS  Google Scholar 

  29. Pham, T.H.V. and Kim, J. 2013. Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method. Curr. Microbiol. 68, 88–95.

    PubMed  Article  CAS  Google Scholar 

  30. Piuri, M., Sanchez-Rivas, C., and Ruzal, S.M. 1998. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett. Appl. Microbiol. 27, 9–13.

    PubMed  Article  CAS  Google Scholar 

  31. Rai, S.K., Roy, J.K., and Mukherjee, A.K. 2010. Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl. Microbiol. Biotechnol. 85, 1437–1450.

    PubMed  Article  CAS  Google Scholar 

  32. Roux, V. and Raoult, D. 2004. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int. J. Syst. Evol. Microbiol. 54, 1049–1054.

    PubMed  Article  CAS  Google Scholar 

  33. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Pare, P.W., and Kloepper, J.W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 4927–4932.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  34. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  35. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  36. Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., De Vos, P., Logan, N.A., and Heyndrickx, M. 2004. Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int. J. Syst. Evol. Microbiol. 54, 885–891.

    PubMed  Article  CAS  Google Scholar 

  37. Sirota-Madi, A., Olender, T., Helman, Y., Ingham, C., Brainis, I., Roth, D., Hagi, E., Brodsky, L., Leshkowitz, D., Galatenko, V., and et al. 2010. Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics 11, 710.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  38. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  39. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  40. Uetanabaro, A.P., Wahrenburg, C., Hunger, W., Pukall, R., Spröer, C., Stackebrandt, E., de Canhos1, V.P., Claus, D., and Fritze, D. 2003. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int. J. Syst. Evol. Microbiol. 53, 1051–1057.

    PubMed  Article  CAS  Google Scholar 

  41. Velázquez, E., de Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R., and Villa, T.G. 2004. Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int. J. Syst. Evol. Microbiol. 54, 59–64.

    PubMed  Article  CAS  Google Scholar 

  42. von der Weid, I., Alviano, D.S., Santos, A.L., Soares, R.M., Alviano, C.S., and Seldin, L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95, 1143–1151.

    PubMed  Article  Google Scholar 

  43. Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., Xie, G., and Sun, G. 2012. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr. J. Microbiol. Res. 6, 4567–4573.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaisoo Kim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moon, J., Kim, J. Isolation of Paenibacillus pinesoli sp. nov. from forest soil in Gyeonggi-Do, Korea. J Microbiol. 52, 273–277 (2014). https://doi.org/10.1007/s12275-014-3622-2

Download citation

Keywords

  • Paenibacillus pinesoli
  • forest soil
  • taxonomy
  • soil bacteria