Abstract
The lytic bacteriaphage (phage) A2 was isolated from human dental plaques along with its bacterial host. The virus was found to have an icosahedron-shaped head (60±3 nm), a sheathed and rigid long tail (∼175 nm) and was categorized into the family Siphoviridae of the order Caudovirales, which are dsDNA viral family, characterised by their ability to infect bacteria and are nonenveloped with a noncontractile tail. The isolated phage contained a linear dsDNA genome having 31,703 base pairs of unique sequence, which were sorted into three contigs and 12 single sequences. A latent period of 25 minutes and burst size of 24±2 particles was determined for the virus. Bioinformatics approaches were used to identify ORFs in the genome. A phylogenetic analysis confirmed the species inter-relationship and its placement in the family.
This is a preview of subscription content, access via your institution.
Refrerences
Aas, J.A., Paster, B.J., Stokes, L.N., Olsen, I., and Dewhirst, F.E. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732.
Aljarbou, A.N., de Luca, A., and Aljofan, M. 2012. Isolation of a new Neisseria phage from the oral cavity of healthy humans. Antivirals Antiretrovirals 1, 416 doi:10.4172/416.
Bachrach, G., Leizerovici-Zigmond, M., Zlotkin, A., Naor, R., and Steinberg, D. 2003. Bacteriophage isolation from human saliva. Lett. Appl. Microbiol. 36, 50–53.
Bourguet, F.A., Souza, B.E., Hinz, A.K., Coleman, M.A., and Jackson, P.J. 2012. Characterization of a novel lytic protein encoded by the Bacillus cereus E33L gene ampD as a Bacillus anthracis antimicrobial protein. Appl. Environ. Microbiol. 78, 3025–3027.
Brussow, H. and Desiere, F. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39, 213–222.
Campbell, L.A., Short, H.B., Young, F.E., and Clark, V.L. 1985. Autoplaquing in Neisseria gonorrhoeae. J. Bacteriol. 164, 461–465.
Chanishvili, N., Chanishvili, T., Tediashvili, M., and Barrow, P.A. 2001. Phages and their application against drug-resistant bacteria. J. Chem. Technol. Biotechnol. 02, 68–2575.
Ellis, D.M. and Dean, D.H. 1985. Nucleotide sequence of the cohesive single-stranded ends of Bacillus subtilis temperate bacteriophage phi 105. J. Virol. 55, 513–515.
Ellis, E.L. and Delbrück, M. 1939. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384.
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.
Fujisawa, H. and Morita, M. 1997. Phage DNA packaging. Genes Cells 2, 537–545.
Grigoriev, A. 1998. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 26, 2286–2290.
Grigoriev, A. 1999. Strand-specific compositional asymmetries in double-stranded DNA viruses. Virus Res. 60, 1–19.
Groth, A.C. and Calos, M.P. 2004. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678.
Hadas, H., Einav, M., Fishov, I., and Zaritsky, A. 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185.
Hendrix, R.W., Smith, M.C., Burns, R.N., Ford, M.E., and Hatfull, G.F. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96, 2192–2197.
Hershey, A.D. and Burgi, E. 1965. Complementary structure of interacting sites at the ends of lambda DNA molecules. Proc. Natl. Acad. Sci. USA 53, 325–330.
Hitch, G., Pratten, J., and Taylor, P.W. 2004. Isolation of bacteriophages from the oral cavity. Lett. Appl. Microbiol. 39, 215–219.
Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. In Munro, H.N. (ed.), Mammalian Protein Metabolism, pp. 21–132, Academic Press, New York, N.Y., USA.
Katsura, I. 1987. Determination of bacteriophage lambda tail length by a protein ruler. Nature 327, 73–75.
Macarthur, D.J. and Jacques, N.A. 2003. Proteome analysis of oral pathogens. J. Dent. Res. 82, 870–876.
Ostergaard, S., Brondsted, L., and Vogensen, F.K. 2001. Identification of a replication protein and repeats essential for DNA replication of the temperate lactococcal bacteriophage TP901-1. Appl. Environ. Microbiol. 67, 774–781.
Pagaling, E., Haigh, R.D., Grant, W.D., Cowan, D.A., Jones, B.E., Ma, Y., Ventosa, A., and Heaph, S. 2007. Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics 8, 410.
Paster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A., Sahasrabudhe, A., and Dewhirst, F.E. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783.
Patel, S.S. and Picha, K.M. 2000. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697.
Pedersen, M., Ostergaard, S., Bresciani, J., and Vogensen, F.K. 2000. Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Virology 276, 315–328.
Piekarowicz, A., Klyz, A., Majchrzak, M., Adamczyk-Poplawska, M., Maugel, T.K., and Stein, D.C. 2007. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 7, 66.
Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Sambrook, J., Fritsch, E.F., and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.
Shine, J. and Dalgarno, L. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346.
Shine, J. and Dalgarno, L. 1975. Terminal-sequence analysis of bacterial ribosomal RNA. Eur. J. Biochem. 57, 221–230.
Smith, N.H., Holmes, E.C., Donovan, G.M., Carpenter, G.A., Spratt, B.G., and Spratt, B.G. 1999. Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species. Mol. Biol. Evol. 16, 773–783.
Speicher, K.D., Kolbas, O., Harper, S., and Speicher, D.W. 2000. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J. Biomol. Tech. 11. 74–86.
Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.
Ursell, L.K., Clemente, J.C., Rideout, J.R., Gevers, D., Caporaso, J.G., and Knight, R. 2012. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J. Allergy Clin. Immunol. 129, 1204–1208.
US Food and Drug Administration. 2006. Food additives permitted for direct addition to food for human consumption; bacteriophage preparation. Fed. Regist. 71, 47729–47732.
Wang, J., Hu, B., Xu, M., Yan, Q., Liu, S., Zhu, X., Sun, Z., Reed, E., Ding, L., Gong, J., Li, Q.Q., and Hu, J. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17, 309–317.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aljarbou, A.N., Aljofan, M. Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque. J Microbiol. 52, 609–618 (2014). https://doi.org/10.1007/s12275-014-3380-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-014-3380-1
Keywords
- Neisseria sp.
- Siphoviridae
- lytic phage A2
- human dental plaques
- contigs
- phylogenetic relationships