Skip to main content
Log in

Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The lytic bacteriaphage (phage) A2 was isolated from human dental plaques along with its bacterial host. The virus was found to have an icosahedron-shaped head (60±3 nm), a sheathed and rigid long tail (∼175 nm) and was categorized into the family Siphoviridae of the order Caudovirales, which are dsDNA viral family, characterised by their ability to infect bacteria and are nonenveloped with a noncontractile tail. The isolated phage contained a linear dsDNA genome having 31,703 base pairs of unique sequence, which were sorted into three contigs and 12 single sequences. A latent period of 25 minutes and burst size of 24±2 particles was determined for the virus. Bioinformatics approaches were used to identify ORFs in the genome. A phylogenetic analysis confirmed the species inter-relationship and its placement in the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Refrerences

  • Aas, J.A., Paster, B.J., Stokes, L.N., Olsen, I., and Dewhirst, F.E. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aljarbou, A.N., de Luca, A., and Aljofan, M. 2012. Isolation of a new Neisseria phage from the oral cavity of healthy humans. Antivirals Antiretrovirals 1, 416 doi:10.4172/416.

    Google Scholar 

  • Bachrach, G., Leizerovici-Zigmond, M., Zlotkin, A., Naor, R., and Steinberg, D. 2003. Bacteriophage isolation from human saliva. Lett. Appl. Microbiol. 36, 50–53.

    Article  PubMed  Google Scholar 

  • Bourguet, F.A., Souza, B.E., Hinz, A.K., Coleman, M.A., and Jackson, P.J. 2012. Characterization of a novel lytic protein encoded by the Bacillus cereus E33L gene ampD as a Bacillus anthracis antimicrobial protein. Appl. Environ. Microbiol. 78, 3025–3027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brussow, H. and Desiere, F. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39, 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, L.A., Short, H.B., Young, F.E., and Clark, V.L. 1985. Autoplaquing in Neisseria gonorrhoeae. J. Bacteriol. 164, 461–465.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chanishvili, N., Chanishvili, T., Tediashvili, M., and Barrow, P.A. 2001. Phages and their application against drug-resistant bacteria. J. Chem. Technol. Biotechnol. 02, 68–2575.

    Google Scholar 

  • Ellis, D.M. and Dean, D.H. 1985. Nucleotide sequence of the cohesive single-stranded ends of Bacillus subtilis temperate bacteriophage phi 105. J. Virol. 55, 513–515.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis, E.L. and Delbrück, M. 1939. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fujisawa, H. and Morita, M. 1997. Phage DNA packaging. Genes Cells 2, 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev, A. 1998. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 26, 2286–2290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grigoriev, A. 1999. Strand-specific compositional asymmetries in double-stranded DNA viruses. Virus Res. 60, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Groth, A.C. and Calos, M.P. 2004. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678.

    Article  CAS  PubMed  Google Scholar 

  • Hadas, H., Einav, M., Fishov, I., and Zaritsky, A. 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix, R.W., Smith, M.C., Burns, R.N., Ford, M.E., and Hatfull, G.F. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96, 2192–2197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hershey, A.D. and Burgi, E. 1965. Complementary structure of interacting sites at the ends of lambda DNA molecules. Proc. Natl. Acad. Sci. USA 53, 325–330.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hitch, G., Pratten, J., and Taylor, P.W. 2004. Isolation of bacteriophages from the oral cavity. Lett. Appl. Microbiol. 39, 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. In Munro, H.N. (ed.), Mammalian Protein Metabolism, pp. 21–132, Academic Press, New York, N.Y., USA.

    Chapter  Google Scholar 

  • Katsura, I. 1987. Determination of bacteriophage lambda tail length by a protein ruler. Nature 327, 73–75.

    Article  CAS  PubMed  Google Scholar 

  • Macarthur, D.J. and Jacques, N.A. 2003. Proteome analysis of oral pathogens. J. Dent. Res. 82, 870–876.

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard, S., Brondsted, L., and Vogensen, F.K. 2001. Identification of a replication protein and repeats essential for DNA replication of the temperate lactococcal bacteriophage TP901-1. Appl. Environ. Microbiol. 67, 774–781.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagaling, E., Haigh, R.D., Grant, W.D., Cowan, D.A., Jones, B.E., Ma, Y., Ventosa, A., and Heaph, S. 2007. Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics 8, 410.

    Article  Google Scholar 

  • Paster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A., Sahasrabudhe, A., and Dewhirst, F.E. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel, S.S. and Picha, K.M. 2000. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, M., Ostergaard, S., Bresciani, J., and Vogensen, F.K. 2000. Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Virology 276, 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Piekarowicz, A., Klyz, A., Majchrzak, M., Adamczyk-Poplawska, M., Maugel, T.K., and Stein, D.C. 2007. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 7, 66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  • Shine, J. and Dalgarno, L. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shine, J. and Dalgarno, L. 1975. Terminal-sequence analysis of bacterial ribosomal RNA. Eur. J. Biochem. 57, 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Smith, N.H., Holmes, E.C., Donovan, G.M., Carpenter, G.A., Spratt, B.G., and Spratt, B.G. 1999. Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species. Mol. Biol. Evol. 16, 773–783.

    Article  CAS  PubMed  Google Scholar 

  • Speicher, K.D., Kolbas, O., Harper, S., and Speicher, D.W. 2000. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J. Biomol. Tech. 11. 74–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Ursell, L.K., Clemente, J.C., Rideout, J.R., Gevers, D., Caporaso, J.G., and Knight, R. 2012. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J. Allergy Clin. Immunol. 129, 1204–1208.

    Article  PubMed Central  PubMed  Google Scholar 

  • US Food and Drug Administration. 2006. Food additives permitted for direct addition to food for human consumption; bacteriophage preparation. Fed. Regist. 71, 47729–47732.

    Google Scholar 

  • Wang, J., Hu, B., Xu, M., Yan, Q., Liu, S., Zhu, X., Sun, Z., Reed, E., Ding, L., Gong, J., Li, Q.Q., and Hu, J. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17, 309–317.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed N. Aljarbou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljarbou, A.N., Aljofan, M. Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque. J Microbiol. 52, 609–618 (2014). https://doi.org/10.1007/s12275-014-3380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3380-1

Keywords

Navigation