Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment

Abstract

A Gram-negative, nonmotile, endospore-forming, rod-shaped bacterial strain LHW35T, which belonged to the genus Paenibacillus, was isolated from marine sediment collected from the south coast of the Republic of Korea. A phylogenetic analysis of 16S rRNA gene sequences indicated that strain LHW35T was most closely related to Paenibacillus taiwanensis G-soil-2-3T (97.2% similarity). The optimal growth conditions for strain LHW35T were 37°C, pH 6.0, and 0% (w/v) NaCl. The main isoprenoid quinone was menaquinone-7 (MK-7) and the major polyamine was spermidine. The diamino acid present in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acids were anteiso-C15:0 and C16:0. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, unidentified amino-hospholipids, unidentified phospholipids, and unidentified polar lipids. A DNA-DNA hybridization experiment using the type strain of P. taiwanensis indicated <40% relatedness. The DNA G+C content was 45.0 mol%. Based on these phylogenetic, genomic, and phenotypic analyses, strain LHW35T should be classified as a novel species within the genus Paenibacillus, for which the name Paenibacillus marinisediminis sp. nov. is proposed. The type strain is LHW35T (=KACC 16317T =JCM 17886T).

This is a preview of subscription content, access via your institution.

References

  1. Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek64, 253–260.

    PubMed  Article  CAS  Google Scholar 

  2. Ash, C., Priest, F.G., and Collins, M.D. 1994. Paenibacillus gen. nov and Paenibacillus polymyxa comb. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int. J. Syst. Bacteriol. 44, 582.

    Google Scholar 

  3. Benson, H.J. 2002. Microbiological applications: a laboratory manualzin general microbiology. McGraw-Hill New York, N.Y., USA.

    Google Scholar 

  4. Busse, J. and Auling, G. 1988. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol.11, 1–8.

    Article  CAS  Google Scholar 

  5. Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev.45, 316–354.

    PubMed  CAS  Google Scholar 

  6. De Vos, P., Ludwig, W., Schleifer, K.-H., and Whitman, W.B. 2009. Family IV. Paenibacillaceae fam. nov. Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 3 (The Firmicutes), pp. 269. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., and Whitman, W.B. (eds.). Springer, New York, N.Y., USA.

    Google Scholar 

  7. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol.39, 224–229.

    Google Scholar 

  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol.17, 368–376.

    PubMed  Article  CAS  Google Scholar 

  9. Gonzalez, C., Gutierrez, C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol.24, 710–715.

    PubMed  Article  CAS  Google Scholar 

  10. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol.4, 770–773.

    PubMed  Article  CAS  Google Scholar 

  11. Judicial Commission of the International Committee for Systematics of Prokaryotes. 2005. The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int. J. Syst. Evol. Microbiol. 55, 513.

    Article  Google Scholar 

  12. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., andet al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol.62, 716–721.

    PubMed  Article  CAS  Google Scholar 

  13. Kluge, A.G. and Farris, F.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool.18, 1–32.

    Article  Google Scholar 

  14. Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA82, 6955–6959.

    PubMed  Article  CAS  Google Scholar 

  15. Lee, F.L., Kuo, H.P., Tai, C.J., Yokota, A., and Lo, C.C. 2007. Paenibacillus taiwanensis sp. nov., isolated from soil in Taiwan. Int. J. Syst. Evol. Microbiol.57, 1351–1354.

    PubMed  Article  CAS  Google Scholar 

  16. MIDI. 1999. Sherlock Microbial Identification System Operating Manual, version 3.0. MIDI, Inc., Newark, DE, USA.

    Google Scholar 

  17. Minnikin, D.E., O’Donnell, A.G., and Goodfellow, M. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.

    Article  CAS  Google Scholar 

  18. Nakamura, L.K. 1996. Paenibacillus apiarius sp. nov. Int. J. Syst. Bacteriol.46, 688–693.

    PubMed  Article  CAS  Google Scholar 

  19. Percival Zhang, Y.H., Himmel, M.E., and Mielenz, J.R. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24, 452–481.

    PubMed  Article  CAS  Google Scholar 

  20. Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829.

    PubMed  Article  CAS  Google Scholar 

  21. Roh, S.W., Sung, Y., Nam, Y.D., Chang, H.W., Kim, K.H., Yoon, J.H., Jeon, C.O., Oh, H.M., and Bae, J.W. 2008. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J. Microbiol.46, 40–44.

    PubMed  Article  CAS  Google Scholar 

  22. Saha, P., Mondal, A.K., Mayilraj, S., Krishnamurthi, S., Bhattacharya, A., and Chakrabarti, T. 2005. Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int. J. Syst. Evol. Microbiol.55, 2577–2581.

    PubMed  Article  CAS  Google Scholar 

  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    PubMed  CAS  Google Scholar 

  24. Schaeffer, A.B. and Fulton, M.D. 1933. A simplified method of staining endospores. Science77, 194.

    PubMed  Article  CAS  Google Scholar 

  25. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol.47, 289–298.

    PubMed  Article  CAS  Google Scholar 

  26. Suzuki, M.T. and Giovannoni, S.J. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol.62, 625–630.

    PubMed  CAS  Google Scholar 

  27. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.

    PubMed  Article  CAS  Google Scholar 

  28. Tcherpakov, M., Ben-Jacob, E., and Gutnick, D.L. 1999. Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster. Int. J. Syst. Bacteriol.49, 239–246.

    PubMed  Article  CAS  Google Scholar 

  29. Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol.31, 575–580.

    PubMed  CAS  Google Scholar 

  30. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., andet al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol.37, 463–464.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Bae.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, HW., Roh, S.W., Yim, K.J. et al. Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol. 51, 312–317 (2013). https://doi.org/10.1007/s12275-013-3198-2

Download citation

Keywords

  • bacterial taxonomy
  • marine sediment
  • Paenibacillus marinisediminis sp. nov.