Journal of Microbiology

, Volume 51, Issue 4, pp 461–470 | Cite as

The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum

  • Andréia Cnossen-Fassoni
  • Denise Mara Soares Bazzolli
  • Sérgio Hermínio Brommonschenkel
  • Elza Fernandes de Araújo
  • Marisa Vieira de QueirozEmail author
Microbial Genetics, Genomics and Molecular Biology


Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean, and the genes that encode its cell-wall-degrading enzymes are crucial for the development of the disease. Pectinases are the most important group of cell wall-degrading enzymes produced by phytopathogenic fungi. The pecC1l gene, which encodes a pectate lyase in C. lindemuthianum, was isolated and characterized. Possible cis-regulatory elements and transcription factor binding sites that may be involved in the regulation of genetic expression were detected in the promoter region of the gene. pecCl1 is represented by a single copy in the genome of C. lindemuthianum, though in silico analyses of the genomes of Colletotrichum graminicola and Colletotrichum higginsianum suggest that the genome of C. lindemuthianum includes other genes that encode pectate lyases. Phylogenetic analysis detected two groups that clustered based on different members of the pectate lyase family. Analysis of the differential expression of pecCl1 during different stages of infection showed a significant increase in pecCl1 expression five days after infection, at the onset of the necrotrophic phase. The split-maker technique proved to be an efficient method for inactivation of the pecCl1 gene, which allowed functional study of a mutant with a site-specific integration. Though gene inactivation did not result in complete loss of pectate lyase activity, the symptoms of anthracnose were reduced. Analysis of pectate lyases might not only contribute to the understanding of anthracnose in the common bean but might also lead to the discovery of an additional target for controlling anthracnose.


pectate lyase Colletotrichum lindemuthianum anthracnose necrotrophic phase aggressiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkan, N., Fluhr, R., Sherman, A., and Prusky, D. 2008. Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit. Mol. Plant-Microbe Interact. 21, 1058–1066.PubMedCrossRefGoogle Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  3. Annis, S.L. and Goodwin, P.H. 1997. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur. J. Plant Pathol. 103, 1–14.CrossRefGoogle Scholar
  4. Ansari, K.I., Palacios, N., Araya, C., Langin, T., Egan, D., and Doohan, F.M. 2004. Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathol. 53, 635–642.CrossRefGoogle Scholar
  5. Aro, N., Ilmén, M., Saloheimo, A., and Penttil. 2002. ACEI is a repressor of cellulase and xylanase genes in Trichoderma reesei. Appl. Environ. Microbiol. 69, 56–65.CrossRefGoogle Scholar
  6. Aro, N., Pakula, T., and Penttil. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29, 719–739.PubMedCrossRefGoogle Scholar
  7. Bailey, J.A. and Jeger, M.J. 1992. Colletotrichum: Biology, Pathology and Control. Commonwealth Mycological Institute, Wallingford, 388.Google Scholar
  8. Barcelos, Q.L., Souza, E.A., and Damasceno e Silva, K.J. 2011. Vegetative compatibility and genetic analysis of Colletotrichum lindemuthianum isolates from Brazil. Genet. Mol. Res. 10, 230–242.PubMedCrossRefGoogle Scholar
  9. Barthe, J.P., Cantenys, D., and Touzé, A. 1981. Purification and characterization of two polygalacturonases secreted by Colletotrichum lindemuthianum. Phytopathology 100, 162–171.Google Scholar
  10. Basse, C.W. and Farfsing, J.W. 2006. Promoters and their regulation in Ustilago maydis and other phytopathogenic fungi. FEMS Microbiol. Lett. 254, 208–216.PubMedCrossRefGoogle Scholar
  11. Ben-Daniel, B., Bar-Zvi, D., and Tsror (Lahkim), L. 2011. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines. Mol. Plant Pathol. 10, 1364–3703.Google Scholar
  12. Catlett, N.L., Lee, B.N., Yoder, O.C., and Turgeon, B.G. 2003. Splitmarker recombination for efficient targeted deletion of fungal genes. Fungal Genet. News 50, 9–11.Google Scholar
  13. Centis, S., Dumas, B., Fournier, J., Marolda, M., and Esquerré-Tugayé, M.T. 1996. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopatogenic fungus Colletotricum lindemuthianum. Gene 170, 125–129.PubMedCrossRefGoogle Scholar
  14. Centis, S., Guillas, I., Sejalon, N., Esquerré-Tugayé, M.T., and Dumas, B. 1997. Endopolygalacturonase genes from Colletotrichum lindemuthianum: cloning of CLPG2 and comparison of its expression to that of CLPG1 during saprophytic and parasitic growth of the fungus. Mol. Plant-Microbe Interact. 10, 769–775.PubMedCrossRefGoogle Scholar
  15. Colletotrichum Sequencing Project. Broad Institute of Harvard and MIT [].
  16. Collmer, A., Ried, J.L., and Mount, M.S. 1988. Assay methods for pectic enzymes. Meth. Enzymol. 161, 329–399.CrossRefGoogle Scholar
  17. Colot, H., Park, G., Jones, J., Turner, G., Borkovich, K., and Dunlap, J.C. 2006. High throughput knockout of transcription factors in Neurospora reveals diverse phenotypes. Proc. Natl. Acad. Sci. USA 103, 10352–10357.PubMedCrossRefGoogle Scholar
  18. Damasceno e Silva, K.J., Souza, E.A., and Ishikawa, F.H. 2007. Characterization of Colletotrichum lindemuthianum isolates from the state of Minas Gerais, Brazil. J. Phytopathol. 155, 241–247.CrossRefGoogle Scholar
  19. Dufresne, M., Bailey, J.A., Michel, D., and Langin, T. 1998. clk1, a serine/threonine protein kinase encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Mol. Plant-Microbe Interact. 11, 99–108.PubMedCrossRefGoogle Scholar
  20. Emanuelsson, E., Brunak, S., von Heijne, G., and Nielsen, H. 2007. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat. Protoc. 2, 953–971.PubMedCrossRefGoogle Scholar
  21. Fontenelle, M.R. 2010. Ph. D. thesis. Detecção e análise de genes que são expressos na interação Colletotrichum lindemuthianum-Phaseolus vulgaris. Federal University of Viçosa, Brazil.Google Scholar
  22. Geffroy, V., Sevignac, M., De Oliveira, J.C., Fouilloux, G., Skroch, P., Thoquet, P., Gepts, P., Langin, T., and Dron, M. 2000. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol. Plant-Microbe Interact. 13, 287–296.PubMedCrossRefGoogle Scholar
  23. Geffroy, V., Sicard, D., De Oliveira, J.C., Sevignac, M., Cohen, S., Gepts, P., Neema, C., Langin, T., and Dron, M. 1999. Identification of an ancestral resistance gene cluster involved in the co evolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol. Plant-Microbe Interact. 12, 774–784.PubMedCrossRefGoogle Scholar
  24. Gravelat, F.N., Askew, D.S., and Sheppard, D.C. 2012. Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach. Methods Mol. Biol. 845, 119–130.PubMedCrossRefGoogle Scholar
  25. Herbert, C., O’Connell, R., Gaulin, E., Salesses, V., Esquerre-Tugaye, M.T., and Dumas, B. 2004. Production of a cell wall-associated endopolygalacaturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection. Fungal Genet. Biol. 41, 140–147.PubMedCrossRefGoogle Scholar
  26. Jia, J. and Wheals, A. 2000. Endopolygalacturonase genes and enzymes from Saccharomyces cerevisiae and Kluyveromyces marxianus. Curr. Genet. 38, 264–270.PubMedCrossRefGoogle Scholar
  27. Kramer-Haimovich, H., Servi, E., Katan, T., Rollins, J., Okon, Y., and Prusky, D. 2006. Effect of ammonia production by Colletotrichum gloeosporioides on pelB activation, pectate lyase secretion, and fruit pathogenicity. Appl. Environ. Microbiol. 72, 1034–1039.PubMedCrossRefGoogle Scholar
  28. Krijger, J., Horbach, R., Behr, M., Schweizer, P., Deising, H.B., and Wirsel, S.G.R. 2008. The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Mol. Plant-Microbe Interact. 21, 1325–1336.PubMedCrossRefGoogle Scholar
  29. Lara-Márquez, A., Zavala-Páramo, M.G., López-Romero, E., and Camacho, H.C. 2011a. Biotechnological potential of pectinolytic complexes of fungi. Biotechnol. Lett. 33, 859–868.PubMedCrossRefGoogle Scholar
  30. Lara-Márquez, A., Zavala-Páramo, M.G., López-Romero, E., Calderón-Cortés, N., López-Gómez, R., Conejo-Saucedo, U., and Cano-Camacho, H. 2011b. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. 11, 260.PubMedCrossRefGoogle Scholar
  31. Lebeda, A., Luhová, L., Sedlárová, M., and Jancova, D. 2001. The role of enzymes in plant-fungal pathogen interactions. J. Plant Dis. Protect. 108, 89–111.Google Scholar
  32. Li, J. and Goodwin, P.H. 2002. Expression of cgmpg2, an endopolygalacturonase gene of Colletotrichum gloeosporioides f. sp. malvae, in culture and during infection of Malva pusilla. J. Phytopathol. 150, 213–219.CrossRefGoogle Scholar
  33. Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.PubMedCrossRefGoogle Scholar
  34. Miyara, I., Shafran, H., Kramer-Haimovich, H., Rollins, J., Sherman, A., and Prusky, D. 2008. Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruits. Mol. Plant Pathol. 9, 281–291.PubMedCrossRefGoogle Scholar
  35. Moran, F., Nasuno, S., and Starr, M.P. 1968. Extracellular and intracellular polygalacturonic acid trans-eliminases of Erwinia carotovora. Arch. Biochem. Biophys. 123, 298–306.PubMedCrossRefGoogle Scholar
  36. Münch, S., Ligner, U., Floss, D.S., Ludwig, N., Sauer, N., and Deising, H.B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165, 41–51.PubMedCrossRefGoogle Scholar
  37. Münch, S., Ludwig, N., Floss, D.S., Sugui, J.A., Koszucka, A.M., Voll, L.M., Sonnewald, U., and Deising, A.H.B. 2011. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation. Mol. Plant Pathol. 12, 43–55.PubMedCrossRefGoogle Scholar
  38. O’Connell, R.J., Thon, M.R., Hacquard, S., Amyotte, S.G., Kleemann, J., Torres, M.F., Damm, U., Buiate, E.A., Epstein, L., Alkan, N., and et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060–1065.PubMedCrossRefGoogle Scholar
  39. Page, R.D.M. 1996. Treeview: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.PubMedGoogle Scholar
  40. Pellier, A.L., Laugé, R., Veneault-Fourrey, C., and Langin, T. 2003. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol. Microbiol. 48, 639–655.PubMedCrossRefGoogle Scholar
  41. Perfect, S.E., Hughes, H.B., O’Connell, R.J., and Green, J.R. 1999. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27, 186–198.PubMedCrossRefGoogle Scholar
  42. Punt, P.J., Oliver, R.P., Dingemanse, M.A., Pouwels, P.H., and Van Den Hondel, C.A.M.J.J. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.PubMedCrossRefGoogle Scholar
  43. Redman, R.S. and Rodriguez, R.J. 1994. Factors affecting the efficient transformation of Colletotrichum species. Exp. Mycol. 18, 230–246.CrossRefGoogle Scholar
  44. Reignault, Ph., Valette-Collet, O., and Boccara, M. 2008. The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur. J. Plant Pathol. 120, 1–11.CrossRefGoogle Scholar
  45. Rodriguez, R.J. and Yoder, O.C. 1987. Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum). Gene 54, 73–81.PubMedCrossRefGoogle Scholar
  46. Rogers, L.M., Kim, Y.K., Guo, W., González-Candelas, L., Li, D., and Kolattukudy, P.E. 2000. Requirement for either a host or pectin induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc. Natl. Acad. Sci. USA 97, 9813–9818.PubMedCrossRefGoogle Scholar
  47. Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, N.Y., USA.Google Scholar
  48. Shih, J., Wei, Y., and Goodwin, P.H. 2000. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f. sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 243, 139–150.PubMedCrossRefGoogle Scholar
  49. Sicard, D., Michalakis, Y., Dron, M., and Neema, C. 1997. Genetic diversity and pathogenic variation of Colletotrichum lindemuthianum in the three centers of origen of its wild host, Phaseolus vulgaris. Phypathology 87, 807–813.CrossRefGoogle Scholar
  50. Specht, C.A., DiRusso, C.C., Novotny, C.P., and Ullrich, R.C. 1982. A method for extracting high molecular-weight deoxyribonucleic acid from fungi. Anal. Biochem. 119, 158–163.PubMedCrossRefGoogle Scholar
  51. Swo Vord, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.Google Scholar
  52. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 2731–2739.PubMedCrossRefGoogle Scholar
  53. Wijesundera, R.L.C., Bailey, J.A., and Byrde, R.J.W. 1984. Production of pectin lyase by Colletotrichum lindemuthianum in culture and infected bean (Phaseolus vulgaris) tissue. J. Gen. Microbiol. 130, 285–290.Google Scholar
  54. Yakoby, N., Beno-Moualem, D., Keen, N.T., Dinoor, A., Pines, O., and Prusky, D. 2001. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol. Plant Microbe Interact. 14, 988–995.PubMedCrossRefGoogle Scholar
  55. You, B.J., Lee, M.H., and Chung, K.R. 2009. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. Arch. Microbiol. 191, 615–622.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andréia Cnossen-Fassoni
    • 1
  • Denise Mara Soares Bazzolli
    • 1
  • Sérgio Hermínio Brommonschenkel
    • 2
  • Elza Fernandes de Araújo
    • 1
  • Marisa Vieira de Queiroz
    • 1
    Email author
  1. 1.Laboratory of Microorganism Molecular Genetics, Department of Microbiology/Institute of Microbiology Applied to Agriculture and Livestock Raising (BIOAGRO)Federal University of ViçosaViçosa-MGBrazil
  2. 2.Laboratory of Genomics, Department of Phytopathology/Institute of Microbiology Applied to Agriculture and Livestock Raising (BIOAGRO)Federal University of ViçosaViçosa-MGBrazil

Personalised recommendations