Skip to main content
Log in

Clades of γ-glutamyltransferases (GGTs) in the ascomycota and heterologous expression of Colletotrichum graminicola CgGGT1, a member of the pezizomycotina-only GGT clade

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gamma-glutamyltransferase (GGT, EC 2.3.2.2) cleaves the γ-glutamyl linkage in glutathione (GSH). Ascomycetes in either the Saccharomycotina or the Taphrinomycotina have one to three GGTs, whereas members of the Pezizomycotina have two to four GGTs. A Bayesian analysis indicates there are three well-supported main clades of GGTs in the Ascomycota. 1) A Saccharomycotina and a Taphrinomycotina-specific GGT sub-clade form a yeast main clade. This clade has the three relatively well-characterized fungal GGTs: (Saccharomyces cerevisiae CIS2 and Schizosaccharomyces pombe Ggt1 and Ggt2) and most of its members have all 14 of the highly conserved and critical amino acids that are found in GGTs in the other kingdoms. 2) In contrast, a main clade (GGT3) differs in 11 of the 14 highly conserved amino acids that are found in GGTs in the other kingdoms. All of the 44 Pezizomycotina analyzed have either one or two GGT3s. 3) There is a Pezizomycotina-only GGT clade that has two well-supported sub-clades (GGT1 and GGT2); this clade differs in only two of the 14 highly conserved amino acids found in GGTs in the other kingdoms. Because the Pezizomycotina GGTs differ in apparently critical amino acids from the cross-kingdom consensus, a putative GGT from Colletotrichum graminicola, a member of the Pezizomycotina, was cloned and the protein product was expressed as a secreted protein in Pichia pastoris. A GGT enzyme assay of the P. pastoris supernatant showed that the recombinant protein was active, thereby demonstrating that CgGGT1 is a bona fide GGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudouin-Cornu, P., Lagniel, G., Kumar, C., Huang, M-E., and Labarre, J. 2012. Glutathione degradation is a key determinant of glutathione homeostasis. J. Biol. Chem. 287, 4552–4561.

    Article  PubMed  CAS  Google Scholar 

  • Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., and Meyer, A.J. 2006. Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141, 446–455.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, B., Ingavale, S., and Bachhawat, A.K. 1997. apd1(+), a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145, 75–83.

    PubMed  CAS  Google Scholar 

  • Corradi, N. and Slamovits, C.H. 2011. The intriguing nature of microsporidian genomes. Brief. Funct. Genomics 10, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Elskens, M.T., Jaspers, C.J., and Penninckx, M.J. 1991. Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J. Gen. Microbiol. 137, 637–644.

    PubMed  CAS  Google Scholar 

  • Grant, C., MacIver, F., and Dawes, I. 1996. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29, 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Harding, C.O., Williams, P., Wagner, E., Chang, D.S., Wild, K., Colwell, R.E., and Wolff, J.A. 1997. Mice with genetic gamma-glutamyl transpeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans and infertility. J. Biol. Chem. 272, 12560–12567.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, Y., Fujii, J., Anderson, M.E., Taniguchi, N., and Meister, A. 1995a. Involvement of Ser-451 and Ser-452 in the catalysis of human γ-glutamyl transpeptidase. J. Biol. Chem. 270, 22223–22228.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, Y., Fujii, J., and Taniguchi, N. 1993. Significance of Arg-107 and Glu-108 in the catalytic human γ-glutamyl transpeptidase. Identification by site-directed mutagenesis. J. Biol. Chem. 268, 3980–3985.

    CAS  Google Scholar 

  • Ikeda, Y., Fujii, J., and Taniguchi, N. 1996. Effects of substitutions of the conserved histidine resisdues in human Γ-glutamyl transpeptidase. Identification by site-directed mutagenesis. J. Biochem. 119, 1166–1170.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, Y., Fujii, J., Taniguchi, N., and Meister, A. 1995b. A human Γ-glutamyl transpeptidase involving aspartate residues and the unique cysteine residue of the light subunit. J. Biol. Chem. 270, 12471–12475.

    Article  PubMed  CAS  Google Scholar 

  • Jaspers, J. and Penninckx, M.J. 1984. Glutathione metabolism in yeast Saccharomyces cerevisiae. Evidence that Γ-glutamyltranspeptidase is a vacuolar enzyme. Biochimie 66, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.A., Kim, B.C., Park, E.H., Ahn, K., and Lim, C.J. 2005. The gene encoding Γ-glutamyl transpeptidase II in the fission yeast is regulated by oxidative and metabolic stress. Biochem. Mol. Biol. 38, 609–618.

    Article  CAS  Google Scholar 

  • Karlin, S. and Altschul, S.F. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, H., Ganguli, D., and Bachhawat, A.K. 2012. Glutathione degradation by the alternative pathway (DUG pathway) in Saccharomyces cerevisiae is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. J. Biol. Chem. 287, 8920–8931.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, H., Kumar, C., Junot, C., Toledano, M.B., and Bachhawat, A.K. 2009. Dug1p is a Cys-Gly peptidase of the Γ-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J. Biol. Chem. 284, 14493–14502.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.U., Hayles, J., Kim, D., Wood, V., Park, H.O., Won, M., Yoo, H.S., Duhig, T., Nam, M., Palmer, G., and et al. 2010. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617–623.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.G., Park, E.H., Kang, H.A., Kang, H.J., Lim, H.W., Kim, K., Park, E.H., Ahn, K., and Lim, C.J. 2005. The Schizosaccharomyces pombe gene encoding Γ-glutamyl transpeptidase I is regulated by non-fermentable carbon sources and nitrogen starvation. J. Microbiol. 43, 44–48.

    PubMed  CAS  Google Scholar 

  • Kumar, C., Igbaria, A., D’Autreaux, B., Planson, A.-G., Junot, C., Godat, E., Bachhawat, A.K., Delaunay-Moisan, A., and Toledano, M.B. 2011. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 30, 2044–2056.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, C., Sharma, R., and Bachhawat, A.K. 2003. Utilization of glutathione as an exogenous sulfur source is independent of Γ-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway. FEMS Microbiol. Lett. 219, 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., and et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Liang, X., and Rollins, J.A. 2012. Sclerotinia sclerotiorum gamma-glutamyl transpeptidase (SsGgt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. Mol. Plant Microbe Interact. 25, 412–420.

    Article  PubMed  Google Scholar 

  • Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., and et al. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–229.

    Article  PubMed  Google Scholar 

  • Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O., and Leustek, T. 2007. Localization of members of the Γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol. 144, 1715–1732.

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y., and et al. 2006. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847.

    Article  PubMed  CAS  Google Scholar 

  • Medina, E.M., Jones, G.W., and Fitzpatrick, D.A. 2011. Reconstructing the fungal tree of life using phylogenomics and a preliminary investigation of the distribution of yeast prion-like proteins in the fungal kingdom. J. Mol. Evol. 73, 116–133.

    Article  PubMed  CAS  Google Scholar 

  • Mehdi, K. and Penninckx, M.J. 1997. An important role for glutathione and Γ-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 143, 1885–1889.

    Article  PubMed  CAS  Google Scholar 

  • Mehdi, K., Thierie, J., and Penninckx, M.J. 2001. Γ-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem. J. 359, 631–637.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. and Anderson, M.E. 1983. Glutathione. Annu. Rev. Biochem. 52, 711–760.

    Article  PubMed  CAS  Google Scholar 

  • Okada, T., Suzuki, H., Wada, K., Kumagai, H., and Fukuyama, K. 2006. Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc. Natl. Acad. Sci. USA 103, 6471–6476.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.J., Lim, H.W., Kim, K., Kim, I.H., Park, E.H., and Lim, C.J. 2004. Characterization and regulation of the Γ-glutamyl transpeptidase gene from the fission yeast Schizosaccharomyces pombe. Can. J. Microbiol. 50, 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.-J., Moon, J.-S., Kim, H.-G., Kim, I.-H., Kim, K., Park, E.-H., and Lim, C.-J. 2005. Characterization of a second gene encoding Γ-glutamyl transpeptidase from Schizosaccharomyces pombe. Can. J. Microbiol. 51, 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Payne, G.A., Nierman, W.C., Wortman, J.R., Pritchard, B.L., Brown, D., Dean, R.A., Bhatnagar, D., Cleveland, T.E., Machida, M., and Yu, J. 2006. Whole genome comparison of Aspergillus flavus and A. oryzae. Med. Mycol. 44, 9–11.

    Article  Google Scholar 

  • Penninckx, M.J. and Elskens, M.T. 1993. Metabolism and functions of glutathione in micro-organisms, pp. 239–301. In Rose, A.H. (ed.), Adv. Microb. Physiol. Academic Press, Sheffield, UK.

    Google Scholar 

  • Pócsi, I., Prade, R.A., and Penninckx, M.J. 2004. Glutathione, altruistic metabolite in fungi, pp. 1–76. In Poole, R.K. (ed.), Advances in microbial physiology. Academic Press, Sheffield, UK.

    Google Scholar 

  • Robbertse, B., Reeves, J.B., Schoch, C.L., and Spatafora, J.W. 2006. A phylogenomic analysis of the Ascomycota. Fungal Genet. Biol. 43, 715–725.

    Article  PubMed  CAS  Google Scholar 

  • Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Z.-Z., Osei-Frimpong, J., Kala, G., Kala, S.V., Barrios, R.J., Habib, G.M., Lukin, D.J., Danney, C.M., Matzuk, M.M., and Lieberman, M.W. 2000. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc. Natl. Acad. Sci. USA 97, 5101–5106.

    Article  PubMed  CAS  Google Scholar 

  • Song, S.H. and Lim, C.J. 2008. Nitrogen depletion causes up-regulation of glutathione content and Γ-glutamyltranspeptidase in Schizosaccharomyces pombe. J. Microbiol. 46, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Suzuki, H., Kumagai, H., Echigo, T., and Tochikura, T. 1988. Molecular cloning of Escherichia coli K-12 ggt and rapid isolation of Γ-glutamyltranspeptidase. Biochem. Biophys. Res. Commun. 150, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Tate, S.S. and Meister, A. 1985. γ-Glutamyl transpeptidase from kidney. Methods Enzymol. 113, 400–419.

    Article  PubMed  CAS  Google Scholar 

  • Ubiyvovk, V.M., Blazhenko, O.V., Gigot, D., Penninckx, M., and Sibirny, A.A. 2006. Role of γ-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biol. Int. 30, 665–671.

    Article  PubMed  CAS  Google Scholar 

  • West, M.B., Wickman, S., Quinalty, L.M., Pavlovicz, R.E., Li, C., and Hanigan, M.H. 2011. Autocatalytic cleavage of human γ-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95. J. Biol. Chem. 286, 28876–28888.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. and Forman, H.J. 2009. Redox regulation of Γ-glutamyl transpeptidase. Am. J. Respir. Cell Mol. Biol. 41, 509–515.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello, M.H., Epstein, L. Clades of γ-glutamyltransferases (GGTs) in the ascomycota and heterologous expression of Colletotrichum graminicola CgGGT1, a member of the pezizomycotina-only GGT clade. J Microbiol. 51, 88–99 (2013). https://doi.org/10.1007/s12275-013-2434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2434-0

Keywords

Navigation