Skip to main content

Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction

Abstract

In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

This is a preview of subscription content, access via your institution.

References

  • Braeckman, B.P., Houthoofd, K., De Vreese, A., and Vanfleteren, J.R. 2002. Assaying metabolic activity in ageing Caenorhabditis elegans. Mech. Ageing Dev. 123, 105–119.

    PubMed  Article  CAS  Google Scholar 

  • Brown, M.K., Evans, J.L., and Luo, Y. 2006. Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol. Biochem. Behav. 85, 620–628.

    PubMed  Article  CAS  Google Scholar 

  • Crawford, D., Libina, N., and Kenyon, C. 2007. Caenorhabditis elegans integrates food and reproductive signals in lifespan determination. Aging Cell 6, 715–721.

    PubMed  Article  CAS  Google Scholar 

  • Doonan, R., McElwee, J.J., Matthijssens, F., Walker, G.A., Houthoofd, K., Back, P., Matscheski, A., Vanfleteren, J.R., and Gems, D. 2008. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22, 3236–3241.

    PubMed  Article  CAS  Google Scholar 

  • Fabian, T.J. and Johnson, T.E. 1994. Production of age-synchronous mass-cultures of Caenorhabditis elegans. J. Gerontol. 49, B145–B156.

    PubMed  Article  CAS  Google Scholar 

  • Gems, D. and Doonan, R. 2009. Antioxidant defense and aging in C. elegans is the oxidative damage theory of aging wrong? Cell Cycle 8, 1681–1687.

    PubMed  Article  CAS  Google Scholar 

  • Gruber, J., Ng, L.F., Poovathingal, S.K., and Halliwell, B. 2009. Deceptively simple but simply deceptive — Caenorhabditis elegans lifespan studies: Considerations for aging and antioxidant effects. FEBS Lett. 583, 3377–3387.

    PubMed  Article  CAS  Google Scholar 

  • Harrington, L.A. and Harley, C.B. 1988. Effect of vitamin-E on lifespan and reproduction in Caenorhabditis elegans. Mech. Ageing Dev. 43, 71–78.

    PubMed  Article  CAS  Google Scholar 

  • Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. 2002a. Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp. Gerontol. 37, 1015–1021.

    PubMed  Article  CAS  Google Scholar 

  • Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. 2002b. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp. Gerontol. 37, 1371–1378.

    PubMed  Article  Google Scholar 

  • Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygn, S., and Vanfleteren, J.R. 2002c. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp. Gerontol. 37, 1359–1369.

    PubMed  Article  Google Scholar 

  • Ikeda, T., Yasui, C., Hoshino, K., Arikawa, K., and Nishikawa, Y. 2007. Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella entetica serovar enteritidis. Appl. Environ. Microbiol. 73, 6404–6409.

    PubMed  Article  CAS  Google Scholar 

  • Katewa, S.D. and Kapahi, P. 2010. Dietary restriction and aging. Aging Cell 9, 105–112.

    PubMed  Article  CAS  Google Scholar 

  • Kimoto-Nira, H., Suzuki, C., Kobayashi, M., Sasaki, K., Kurisaki, J.I., and Mizumachi, K. 2007. Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. Brit. J. Nutr. 98, 1178–1186.

    PubMed  Article  CAS  Google Scholar 

  • Klass, M.R. 1977. Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influncing life span. Mech. Ageing Dev. 6, 413–429.

    PubMed  Article  CAS  Google Scholar 

  • Mair, W. and Dillin, A. 2008. Aging and survival: The genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754.

    PubMed  Article  CAS  Google Scholar 

  • Martin, B., Golden, E., Carlson, O.D., Egan, J.M., Mattson, M.P., and Maudsley, S. 2008. Caloric restriction: Impact upon pituitary function and reproduction. Ageing Res. Rev. 7, 209–224.

    PubMed  Article  CAS  Google Scholar 

  • Mehta, L.H. and Roth, G.S. 2009. Caloric restriction and longevity The science and the ascetic experience. In Bushell, W.C., Olivo, E.L., and Theise, N.D. (eds.), Longevity, Regeneration, and Optimal Health: Integrating Eastern and Westen Perspectives, Vol. 1172, pp. 28–33. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • Metchnikoff, E. 1908. The microbes of intestinal putrefaction. C. R. A. Cad. Sci. 147, 579–582.

    Google Scholar 

  • Morck, C. and Pilon, M. 2006. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39.

    PubMed  Article  Google Scholar 

  • Parvez, S., Malik, K.A., Kang, S.A., and Kim, H.Y. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171–1185.

    PubMed  Article  CAS  Google Scholar 

  • Paull, K.D., Shoemaker, R.H., Boyd, M.R., Parsons, J.L., Risbood, P.A., Barbera, W.A., Sharma, M.N., Baker, D.C., Hand, E., Scudiero, D.A., and et al. 1988. The synthesis of XTT-a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J. Heterocycl. Chem. 25, 911–914.

    Article  CAS  Google Scholar 

  • Pun, P.B.L., Gruber, J., Tang, S.Y., Schaffer, S., Ong, R.L.S., Fong, S., Ng, L.F., Cheah, I., and Halliwell, B. 2010. Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 11, 17–30.

    PubMed  Article  Google Scholar 

  • Ristow, M. and Schmeisser, S. 2011. Extending life span by increasing oxidative stress. Free Radical Biol. Med. 51, 327–336.

    Article  CAS  Google Scholar 

  • Salinas, L.S., Maldonado, E., and Navarro, R.E. 2006. Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ. 13, 2129–2139.

    PubMed  Article  CAS  Google Scholar 

  • Saul, N., Pietsch, K., Menzel, R., Sturzenbaum, S.R., and Steinberg, C.E.W. 2010. The longevity effect of tannic acid in Caenorhabditis elegans: Disposable soma meets hormesis. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 626–635.

    PubMed  Article  Google Scholar 

  • Sohal, R.S. and Weindruch, R. 1996. Oxidative stress, caloric restriction, and aging. Science 273, 59–63.

    PubMed  Article  CAS  Google Scholar 

  • Stiernagle, T. 2006. Maintenance of C. elegans. pp. 1–11. Worm-Book: the online review of C. elegans biology, In The C. elegans Research Community. Pasadena, CA, USA.

    Google Scholar 

  • Sulston, J. and Hodgkin, J. 1988. The nematode Caenorhabditis elegans. Methods. Cold Spring Harbor Monograph Series 17, 587–606.

    Google Scholar 

  • Van Raamsdonk, J.M. and Hekimi, S. 2010. Reactive oxygen species and aging in Caenorhabditis elegans: Causal or casual relationship? Antioxid. Redox. Sign. 13, 1911–1953.

    Article  Google Scholar 

  • Vasquez, N., Suau, A., Magne, F., Pochart, P., and Pelissier, M.A. 2009. Differential effects of Bifidobacterium pseudolongum strain patronus and metronidazole in the rat gut. Appl. Environ. Microbiol. 75, 381–386.

    PubMed  Article  CAS  Google Scholar 

  • Vina, J., Borras, C., and Miquel, J. 2007. Theories of ageing. IUBMB Life 59, 249–254.

    PubMed  Article  CAS  Google Scholar 

  • Wang, F., Jiang, L., Liu, A.P., Guo, X.H., and Ren, F.Z. 2008. Analysis of antigenotoxicity of Lactobacillus salivarius by high performance liquid chromatography. Chin. J. Anal. Chem. 36, 740–744.

    Article  CAS  Google Scholar 

  • Zhang, H., Wang, Y., Liu, M., Chen, S., Zhang, H.J., Wang, Y., Liu, M.F., and Chen, S.H. 2008. Effect of lipoteichoic acid of Bifidobacterium on senile phenotypes of aging mice induced by D-galactose. Chin. J. Microecology 20, 219–221.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazheng Ren.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, Y., Zhao, L., Zheng, X. et al. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction. J Microbiol. 51, 183–188 (2013). https://doi.org/10.1007/s12275-013-2076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2076-2

Keywords

  • Lactobacillus salivarius FDB89
  • longevity
  • Caenorhabditis elegans
  • dietary restriction