Advertisement

Journal of Microbiology

, Volume 51, Issue 2, pp 183–188 | Cite as

Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction

  • Yang Zhao
  • Liang Zhao
  • Xiaonan Zheng
  • Tianjiao Fu
  • Huiyuan Guo
  • Fazheng RenEmail author
Microbial Physiology and Biochemistry

Abstract

In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

Keywords

Lactobacillus salivarius FDB89 longevity Caenorhabditis elegans dietary restriction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braeckman, B.P., Houthoofd, K., De Vreese, A., and Vanfleteren, J.R. 2002. Assaying metabolic activity in ageing Caenorhabditis elegans. Mech. Ageing Dev. 123, 105–119.PubMedCrossRefGoogle Scholar
  2. Brown, M.K., Evans, J.L., and Luo, Y. 2006. Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol. Biochem. Behav. 85, 620–628.PubMedCrossRefGoogle Scholar
  3. Crawford, D., Libina, N., and Kenyon, C. 2007. Caenorhabditis elegans integrates food and reproductive signals in lifespan determination. Aging Cell 6, 715–721.PubMedCrossRefGoogle Scholar
  4. Doonan, R., McElwee, J.J., Matthijssens, F., Walker, G.A., Houthoofd, K., Back, P., Matscheski, A., Vanfleteren, J.R., and Gems, D. 2008. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22, 3236–3241.PubMedCrossRefGoogle Scholar
  5. Fabian, T.J. and Johnson, T.E. 1994. Production of age-synchronous mass-cultures of Caenorhabditis elegans. J. Gerontol. 49, B145–B156.PubMedCrossRefGoogle Scholar
  6. Gems, D. and Doonan, R. 2009. Antioxidant defense and aging in C. elegans is the oxidative damage theory of aging wrong? Cell Cycle 8, 1681–1687.PubMedCrossRefGoogle Scholar
  7. Gruber, J., Ng, L.F., Poovathingal, S.K., and Halliwell, B. 2009. Deceptively simple but simply deceptive — Caenorhabditis elegans lifespan studies: Considerations for aging and antioxidant effects. FEBS Lett. 583, 3377–3387.PubMedCrossRefGoogle Scholar
  8. Harrington, L.A. and Harley, C.B. 1988. Effect of vitamin-E on lifespan and reproduction in Caenorhabditis elegans. Mech. Ageing Dev. 43, 71–78.PubMedCrossRefGoogle Scholar
  9. Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. 2002a. Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp. Gerontol. 37, 1015–1021.PubMedCrossRefGoogle Scholar
  10. Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. 2002b. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp. Gerontol. 37, 1371–1378.PubMedCrossRefGoogle Scholar
  11. Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygn, S., and Vanfleteren, J.R. 2002c. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp. Gerontol. 37, 1359–1369.PubMedCrossRefGoogle Scholar
  12. Ikeda, T., Yasui, C., Hoshino, K., Arikawa, K., and Nishikawa, Y. 2007. Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella entetica serovar enteritidis. Appl. Environ. Microbiol. 73, 6404–6409.PubMedCrossRefGoogle Scholar
  13. Katewa, S.D. and Kapahi, P. 2010. Dietary restriction and aging. Aging Cell 9, 105–112.PubMedCrossRefGoogle Scholar
  14. Kimoto-Nira, H., Suzuki, C., Kobayashi, M., Sasaki, K., Kurisaki, J.I., and Mizumachi, K. 2007. Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. Brit. J. Nutr. 98, 1178–1186.PubMedCrossRefGoogle Scholar
  15. Klass, M.R. 1977. Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influncing life span. Mech. Ageing Dev. 6, 413–429.PubMedCrossRefGoogle Scholar
  16. Mair, W. and Dillin, A. 2008. Aging and survival: The genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754.PubMedCrossRefGoogle Scholar
  17. Martin, B., Golden, E., Carlson, O.D., Egan, J.M., Mattson, M.P., and Maudsley, S. 2008. Caloric restriction: Impact upon pituitary function and reproduction. Ageing Res. Rev. 7, 209–224.PubMedCrossRefGoogle Scholar
  18. Mehta, L.H. and Roth, G.S. 2009. Caloric restriction and longevity The science and the ascetic experience. In Bushell, W.C., Olivo, E.L., and Theise, N.D. (eds.), Longevity, Regeneration, and Optimal Health: Integrating Eastern and Westen Perspectives, Vol. 1172, pp. 28–33. Blackwell Publishing, Oxford, UK.Google Scholar
  19. Metchnikoff, E. 1908. The microbes of intestinal putrefaction. C. R. A. Cad. Sci. 147, 579–582.Google Scholar
  20. Morck, C. and Pilon, M. 2006. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39.PubMedCrossRefGoogle Scholar
  21. Parvez, S., Malik, K.A., Kang, S.A., and Kim, H.Y. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171–1185.PubMedCrossRefGoogle Scholar
  22. Paull, K.D., Shoemaker, R.H., Boyd, M.R., Parsons, J.L., Risbood, P.A., Barbera, W.A., Sharma, M.N., Baker, D.C., Hand, E., Scudiero, D.A., and et al. 1988. The synthesis of XTT-a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J. Heterocycl. Chem. 25, 911–914.CrossRefGoogle Scholar
  23. Pun, P.B.L., Gruber, J., Tang, S.Y., Schaffer, S., Ong, R.L.S., Fong, S., Ng, L.F., Cheah, I., and Halliwell, B. 2010. Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 11, 17–30.PubMedCrossRefGoogle Scholar
  24. Ristow, M. and Schmeisser, S. 2011. Extending life span by increasing oxidative stress. Free Radical Biol. Med. 51, 327–336.CrossRefGoogle Scholar
  25. Salinas, L.S., Maldonado, E., and Navarro, R.E. 2006. Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ. 13, 2129–2139.PubMedCrossRefGoogle Scholar
  26. Saul, N., Pietsch, K., Menzel, R., Sturzenbaum, S.R., and Steinberg, C.E.W. 2010. The longevity effect of tannic acid in Caenorhabditis elegans: Disposable soma meets hormesis. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 626–635.PubMedCrossRefGoogle Scholar
  27. Sohal, R.S. and Weindruch, R. 1996. Oxidative stress, caloric restriction, and aging. Science 273, 59–63.PubMedCrossRefGoogle Scholar
  28. Stiernagle, T. 2006. Maintenance of C. elegans. pp. 1–11. Worm-Book: the online review of C. elegans biology, In The C. elegans Research Community. Pasadena, CA, USA.Google Scholar
  29. Sulston, J. and Hodgkin, J. 1988. The nematode Caenorhabditis elegans. Methods. Cold Spring Harbor Monograph Series 17, 587–606.Google Scholar
  30. Van Raamsdonk, J.M. and Hekimi, S. 2010. Reactive oxygen species and aging in Caenorhabditis elegans: Causal or casual relationship? Antioxid. Redox. Sign. 13, 1911–1953.CrossRefGoogle Scholar
  31. Vasquez, N., Suau, A., Magne, F., Pochart, P., and Pelissier, M.A. 2009. Differential effects of Bifidobacterium pseudolongum strain patronus and metronidazole in the rat gut. Appl. Environ. Microbiol. 75, 381–386.PubMedCrossRefGoogle Scholar
  32. Vina, J., Borras, C., and Miquel, J. 2007. Theories of ageing. IUBMB Life 59, 249–254.PubMedCrossRefGoogle Scholar
  33. Wang, F., Jiang, L., Liu, A.P., Guo, X.H., and Ren, F.Z. 2008. Analysis of antigenotoxicity of Lactobacillus salivarius by high performance liquid chromatography. Chin. J. Anal. Chem. 36, 740–744.CrossRefGoogle Scholar
  34. Zhang, H., Wang, Y., Liu, M., Chen, S., Zhang, H.J., Wang, Y., Liu, M.F., and Chen, S.H. 2008. Effect of lipoteichoic acid of Bifidobacterium on senile phenotypes of aging mice induced by D-galactose. Chin. J. Microecology 20, 219–221.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yang Zhao
    • 1
    • 3
  • Liang Zhao
    • 1
    • 2
  • Xiaonan Zheng
    • 1
    • 3
  • Tianjiao Fu
    • 1
  • Huiyuan Guo
    • 1
    • 2
  • Fazheng Ren
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingP. R. China
  2. 2.Beijing Higher Institution Engineering Research Center of Animal ProductBeijingP. R. China
  3. 3.Beijing Key Laboratory of NutritionHealth & Food SafetyBeijingP. R. China

Personalised recommendations