Advertisement

Journal of Microbiology

, Volume 50, Issue 6, pp 1071–1074 | Cite as

Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities

  • Jae-Hyung Ahn
  • Byung-Yong Kim
  • Jaekyeong Song
  • Hang-Yeon WeonEmail author
Note

Abstract

The effects of PCR cycle number and DNA polymerase type on 16S rRNA gene pyrosequencing analysis were investigated using an artificially prepared bacterial community (mock community). The bacterial richness was overestimated at increased PCR cycle number mostly due to the occurence of chimeric sequences, and this was more serious with a DNA polymerase having proofreading activity than with Taq DNA polymerase. These results suggest that PCR cycle number must be kept as low as possible for accurate estimation of bacterial richness and that particular care must be taken when a DNA polymerase having proofreading activity is used.

Keywords

pyrosequencing 16S rRNA gene PCR artifacts PCR cycle number DNA polymerase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2012_2642_MOESM1_ESM.pdf (86 kb)
Supplementary material, approximately 86.1 KB.

References

  1. Acinas, S.G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., and Polz, M.F. 2005. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol.71, 8966–8969.PubMedCrossRefGoogle Scholar
  2. Ahn, J.-H., Hong, I.-P., Bok, J.-I., Kim, B.-Y., Song, J., and Weon, H.-Y. 2012. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol.50, 735–745.PubMedCrossRefGoogle Scholar
  3. Bates, S.T., Berg-Lyons, D., Caporaso, J.G., Walters, W.A., Knight, R., and Fierer, N. 2011. Examining the global distribution of dominant archaeal populations in soil. ISME J.5, 908–917.PubMedCrossRefGoogle Scholar
  4. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA108, 4516–4522.PubMedCrossRefGoogle Scholar
  5. Delmont, T.O., Prestat, E., Keegan, K.P., Faubladier, M., Robe, P., Clark, I.M., Pelletier, E., Hirsch, P.R., Meyer, F., Gilbert, J.A., andet al. 2012. Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J.6, 1677–1687.PubMedCrossRefGoogle Scholar
  6. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200.PubMedCrossRefGoogle Scholar
  7. Galand, P.E., Casamayor, E.O., Kirchman, D.L., and Lovejoy, C. 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA106, 22427–22432.PubMedCrossRefGoogle Scholar
  8. Hamp, T.J., Jones, W.J., and Fodor, A.A. 2009. Effects of experimental choices and analysis noise on surveys of the “rare biosphere”. Appl. Environ. Microbiol.75, 3263–3270.PubMedCrossRefGoogle Scholar
  9. Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L., and Welch, D.M. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol.8, R143.PubMedCrossRefGoogle Scholar
  10. Huse, S.M., Welch, D.M., Morrison, H.G., and Sogin, M.L. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol.12, 1889–1898.PubMedCrossRefGoogle Scholar
  11. Judo, M.S.B., Wedel, A.B., and Wilson, C. 1998. Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res.26, 1819–1825.PubMedCrossRefGoogle Scholar
  12. Kunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol.12, 118–123.PubMedCrossRefGoogle Scholar
  13. Lee, C.K., Herbold, C.W., Polson, S.W., Wommack, K.E., Williamson, S.J., McDonald, I.R., and Cary, S.C. 2012a. Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS ONE7, e44224.PubMedCrossRefGoogle Scholar
  14. Lee, S., Weon, H.-Y., Han, K., and Ahn, T.-Y. 2012b. Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile. Int. J. Sys. Evol. Microbiol.62, 2378–2382.Google Scholar
  15. Nam, Y.D., Jung, M.J., Roh, S.W., Kim, M.S., and Bae, J.W. 2011. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS ONE6, e22109.PubMedCrossRefGoogle Scholar
  16. Pinto, A.J. and Raskin, L. 2012. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE7, e43093.PubMedCrossRefGoogle Scholar
  17. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., andet al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65.PubMedCrossRefGoogle Scholar
  18. Qiu, X., Wu, L., Huang, H., McDonel, P.E., Palumbo, A.V., Tiedje, J.M., and Zhou, J. 2001. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl. Environ. Microbiol.67, 880–887.PubMedCrossRefGoogle Scholar
  19. Quince, C., Lanzén, A., Curtis, T.P., Davenport, R.J., Hall, N., Head, I.M., Read, L.F., and Sloan, W.T. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods6, 639–641.PubMedCrossRefGoogle Scholar
  20. Quince, C., Lanzén, A., Davenport, R., and Turnbaugh, P. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics12, 38.PubMedCrossRefGoogle Scholar
  21. Reeder, J. and Knight, R. 2009. The ‘rare biosphere’: a reality check. Nature Methods6, 636–637.PubMedCrossRefGoogle Scholar
  22. Roesch, L.F.W., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., Daroub, S.H., Camargo, F.A.O., Farmerie, W.G., and Triplett, E.W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J.1, 283–290.PubMedGoogle Scholar
  23. Schloss, P.D., Gevers, D., and Westcott, S.L. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE6, e27310.PubMedCrossRefGoogle Scholar
  24. Schloss, P.D. and Westcott, S.L. 2011. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol.77, 3219–3226.PubMedCrossRefGoogle Scholar
  25. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., andet al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541.PubMedCrossRefGoogle Scholar
  26. Sun, Y., Cai, Y., Liu, L., Yu, F., Farrell, M.L., McKendree, W., and Farmerie, W. 2009. ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res.37, e76.PubMedCrossRefGoogle Scholar
  27. Tringe, S.G. and Hugenholtz, P. 2011. The enduring legacy of small subunit rRNA in microbiology, pp. 123–128. In de Bruijn, F.J. (ed.), Handbook of molecular microbial ecology, John Wiley & Sons, Inc., New Jersey, USA.CrossRefGoogle Scholar
  28. Weinstock, G.M. 2011. The impact of next-generation sequencing technologies on metagenomics, pp. 143–147. In De Bruijn, F.J. (ed.), Handbook of molecular microbial ecology, John Wiley & Sons, Inc., New Jersey, USA.CrossRefGoogle Scholar
  29. Wright, E.S., Yilmaz, L.S., and Noguera, D.R. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol.78, 717–725.PubMedCrossRefGoogle Scholar
  30. Zylstra, P., Rothenfluh, H.S., Weiller, G.F., Blanden, R.V., and Steele, E.J. 1998. PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol. Cell Biol.76, 395–405.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jae-Hyung Ahn
    • 1
  • Byung-Yong Kim
    • 1
  • Jaekyeong Song
    • 1
  • Hang-Yeon Weon
    • 1
    Email author
  1. 1.Agricultural Microbiology Division, National Academy of Agricultural ScienceRural Development AdministrationSuwonRepublic of Korea

Personalised recommendations