Skip to main content
Log in

Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13

  • Article
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

An endo-arabinanase (BLABNase) gene from Bacillus licheniformis DSM13 was cloned and expressed in Escherichia coli, and the biochemical properties of its encoded enzyme were characterized. The BLABNase gene consists of a single open reading frame of 987 nucleotides that encodes 328 amino acids with a predicted molecular mass of about 36 kDa. BLABNase exhibited the highest activity against debranched α-(1,5)-arabinan in 50 mM sodium acetate buffer (pH 6.0) at 55°C. Enzymatic characterization revealed that BLABNase hydrolyzes debranched or linear arabinans with a much higher activity than branched arabinan from sugar beet. Enzymatic hydrolysis pattern analyses demonstrated BLABNase to be a typical endo-(1,5)-α-s-arabinanase (EC 3.2.1.99) that randomly cleaves the internal α-(1,5)-linked L-arabinofuranosyl residues of a branchless arabinan backbone to release arabinotriose mainly, although a small amount of arabino-oligosaccharide intermediates is also liberated. Our results indicated that BLABNase acts preferentially along with the oligosaccharides longer than arabinopentaose, thus enabling the enzymatic production of various arabino-oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhassid, A., Ben-David, A., Tabachnikov, O., Libster, D., Naveh, E., Zolotnitsky, G., Shoham, Y., and Shoham, G. 2009. Crystal structure of an inverting GH 43 1,5-α-l-arabinanase from Geobacillus stearothermophilus complexed with its substrate. Biochem. J. 422, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

  • Grootaert, C., Delcour, J.A., Courtin, C.M., Broekaert, W.F., Verstraete, W., and Van de Wiele, T. 2007. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Technol. 18, 64–71.

    Article  CAS  Google Scholar 

  • Hizukuri, S. 1999. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46, 159–165.

    Article  CAS  Google Scholar 

  • Hong, M.R., Park, C.S., and Oh, D.K. 2009. Characterization of a thermostable endo-1,5-alpha-l-arabinanase from Caldicellulosiruptor saccharolyticus. Biotechnol. Lett. 31, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  • Inácio, J.M. and de Sá-Nogueira, I. 2008. Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J. Bacteriol. 190, 4272–4280.

    Article  PubMed  Google Scholar 

  • Kim, T.J. 2008. Microbial exo- and endo-arabinosyl hydrolases: Structure, function, and application in l-arabinose production, pp. 229–257. In Park, K.H. (ed.) Carbohydrate-Active Enzymes. CRC Press, Woodhead Publishing Ltd., Cambridge, England.

    Chapter  Google Scholar 

  • Leal, T.F. and de Sá-Nogueira, I. 2004. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Lim, Y.R., Yeom, S.J., Kim, Y.S., and Oh, D.K. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102, 4277–4280.

    Article  PubMed  CAS  Google Scholar 

  • McKie, V.A., Black, G.W., Millward-Sadler, S.J., Hazlewood, G.P., Laurie, J.I., and Gilbert, H.J. 1997. Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo-mode of action. Biochem. J. 323, 547–555.

    PubMed  CAS  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  • Numan, M.T. and Bhosle, N.B. 2006. α-l-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33, 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Nurizzo, D., Turkenburg, J.P., Charnock, S.J., Roberts, S.M., Dodson, E.J., McKie, V.A., Taylor, E.J., Gilbert, H.J., and Davies, G.J. 2002. Cellvibrio japonicus α-l-arabinanase 43A has a novel five-blade β-propeller fold. Nat. Struct. Biol. 9, 665–668.

    Article  PubMed  CAS  Google Scholar 

  • Proctor, M.R., Taylor, E.J., Nurizzo, D., Turkenburg, J.P., Lloyd, R.M., Vardakou, M., Davies, G.J., and Gilbert, H.J. 2005. Tailored catalysis for plant cell-wall degradation: Redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc. Natl. Acad. Sci. USA 102, 2697–2702.

    Article  PubMed  CAS  Google Scholar 

  • Ramon, D., vd Veen, P., and Visser, J. 1993. Arabinan degrading enzymes from Aspergillus nidulans: induction and purification. FEMS Microbiol. Lett. 113, 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Seo, E.S., Lim, Y.R., Kim, Y.S., Park, C.S., and Oh, D.K. 2010. Characterization of a recombinant endo-1,5-α-l-arabinanase from the isolated bacterium Bacillus licheniformis. Biotechnol. Bioproc. Eng. 15, 590–594.

    Article  CAS  Google Scholar 

  • Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., and Inoue, S. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45, 1368–1374.

    Article  PubMed  CAS  Google Scholar 

  • Takao, M., Akiyama, K., and Sakai, T. 2002. Purification and characterization of thermostable endo-1,5-α-l-arabinase from a strain of Bacillus thermodenitrificans. Appl. Environ. Microbiol. 68, 1639–1646.

    Article  PubMed  CAS  Google Scholar 

  • Veith, B., Herzberg, C., Steckel, S., Feesche, J., Maurer, K.H., Ehrenreich, P., B↑mer, S., Henne, A., Liesegang, H., Merkl, R., and et al. 2004. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J. Mol. Microbiol. Biotechnol. 7, 204–211.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, A., Tada, T., Wada, K., Nakaniwa, T., Kitatani, T., Sogabe, Y., Takao, M., Sakai, T., and Nishimura, K. 2005. Structural basis for thermostability of endo-1,5-α-l-arabinanase from Bacillus thermodenitrificans TS-3. J. Biochem. 137, 587–592.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jip Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JM., Jang, MU., Kang, JH. et al. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J Microbiol. 50, 1041–1046 (2012). https://doi.org/10.1007/s12275-012-2489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2489-3

Keywords

Navigation