Skip to main content
Log in

Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones

  • Articles
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA1 and GA4) and inactive (GA9, GA12, GA19, GA20, GA24, GA34, and GA53) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA12→GA24→GA9→GA4→ GA34) in the tomato plants as compared to the NB and DW control plants. Abscisic acid, a plant stress hormone, was significantly down-regulated in the presence of Promicromonospora sp. SE188. Contrarily, salicylic acid was significantly higher in the tomato plant after Promicromonospora sp. SE188 inoculation as compared to the controls. Promicromonospora sp. SE188 showed promising stimulation of tomato plant growth. From the results it appears that Promicromonospora sp. SE188 has potential as a bio-fertilizer and should be more broadly tested in field trials for higher crop production in eco-friendly farming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, M., Sako, Y., and Ishida, Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol.32, 424–432.

    Article  CAS  Google Scholar 

  • Adesemoye, A.O., Torbert, H.A., and Kloepper, J.W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol.58, 921–929.

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J.A., Nicolás, G., López-Climent, M., Gómez-Cadenas, A., and Nicolás, C. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in arabidopsis seeds. Plant Physiol.150, 1335–1344.

    Article  PubMed  Google Scholar 

  • Asghar, H.N., Zahir, Z.A., Arshad, M., and Khaliq, K. 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol. Fertil. Soils35, 231–237.

    Article  CAS  Google Scholar 

  • Atzorn, R., Crozier, A., Wheeler, C., and Sandberg, G. 1988. Production of gibberellins and indole 3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta175, 532–538.

    Article  CAS  Google Scholar 

  • Bastián, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R., and Bottini, R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul.24, 7–11.

    Article  Google Scholar 

  • Bevivino, A., Sarrocco, S., Dalmastri, C., Tabacchioni, S., Cantale, C., and Chiarini, L. 1998. Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol. Ecol.27, 225–237.

    Article  CAS  Google Scholar 

  • Bloemberg, G.V. and Lugtenber, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrole by rhizobacteria. Curr. Opin. Plant Biol.4, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Bottini, R., Cassán, F., and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol.65, 497–503.

    Article  PubMed  CAS  Google Scholar 

  • Bottini, R., Fulchieri, M., Pearce, D., and Pharis, R.P. 1989. Identification of gibberellins A1, A3, and isoA3 in cultures of Azospirillum lipoferum. Plant Physiol.90, 45–47.

    Article  PubMed  CAS  Google Scholar 

  • Burd, G., Dixon, D.G., and Glick, B.R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol.46, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Çakmakçi, R., Erat, M., Erdoğan, Ü.G., and Dönmez, M.F. 2007. The influence of PGPR on growth parameters, antioxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J. Plant Nutr. Soil Sci.170, 288–295

    Article  Google Scholar 

  • Cocking, E.C. 2003. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil252, 169–175.

    Article  CAS  Google Scholar 

  • Dobert, R.C., Rood, S.B., and Blevins, D.G. 1992. Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol.98, 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Gafur, A., Schützendübel, A., Langenfeld-Heyser, R., Fritz, E., and Polle, A. 2004. Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus×canescens) differ in H2O2 production. Plant Biol.66, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Gulati, A., Vyas, P., Rahi, P., and Kasana, R.C. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol.58, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Mañero, F., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R., and Talon, M. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant111, 206–211.

    Article  Google Scholar 

  • Hayat, R., Ali, S., Amara, U., Khalid, R., and Ahmed, I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol.60, 579–598.

    Article  Google Scholar 

  • Hedden, P. 1997. The oxidase of gibberellin biosynthesis: their function and mechanism. Physiol. Plant101, 709–719.

    Article  CAS  Google Scholar 

  • Hedden, P. and Kamiya, Y. 1997. Gibberellin biosynthesis: enzymes, genes and their regulation. Plant Mol. Biol.48, 431–460.

    Article  CAS  Google Scholar 

  • Iqbal, M. and Ashraf, M. 2010. Changes in hormonal balance: a possible mechanism of pre-sowing chilling-induced salt tolerance in spring wheat. J. Agron. Crop Sci.196, 440–454.

    Article  Google Scholar 

  • Janzen, R., Rood, S., Dormar, J., and McGill, W. 1992. Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol. Biochem.24, 1061–1064.

    Article  CAS  Google Scholar 

  • Joo, G.J., Kang, S.M., Hamayun, M., Kim, S.K., Na, C.I., Shin, D.H., and Lee, I.J. 2009. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J. Microbiol.47, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Joo, G.J., Kim, Y.M., Kim, J.T., Rhee, I.K., Kim, J.H., and Lee, I.J. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol.43, 510–515.

    PubMed  CAS  Google Scholar 

  • Joo, G.J., Kim, I.J., Lee, I.J., Song, K.S., and Rhee, I.K. 2004. Growth-promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macrolides and Bacillus pumilus. Biotechnol. Lett.26, 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S.M., Hamayun, M., Joo, G.J., Khan, A.L., Kim, Y.H., Kim, S.K., Jeong, H.J., and Lee, I.J. 2010. Effect of Burkholderia sp. KCTC 11096BP on some physiochemical attributes of cucumber. Eur. J. Soil Biol.46, 264–268.

    Article  CAS  Google Scholar 

  • Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H.Y., Hong, J.K., and Lee, I.J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acineto bacter calcoaceticus and its effect on plant growth. Biotechnol. Lett.31, 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Khalid, A., Arshad, M., and Zahir, Z.A. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol.96, 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A.L., Hamayun, M., Ahmad, N., Waqas, M., Kang, S.M., Kim, Y.H., and Lee, I.J. 2011a. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol. Plantarum.143, 329–343.

  • Khan, A.L., Hamayun, M., Ahmad, N., Hussain, J., Kang, S.M., Kim, Y.H., Adnan, M., Tang, D.H., Waqas, M., Radhakrishnan, R., andet al. 2011b. Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L. J. Microbiol. Biotechnol.21, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A.L., Hamayun, M., Kim, Y.H., Kang, S.M., and Lee, I.J. 2011c. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem.49, 852–862.

    Article  PubMed  CAS  Google Scholar 

  • Kidoglu, F., Gül, A., Ozaktan, H., and Tüzel, Y. 2008. Effect of rhizobacteria on plant growth of different vegetables. Acta. Hort.801, 1471–1477.

    Google Scholar 

  • Kloepper, J.W., Rodríguez-Kábana, R., McInroy, J.A., and Collins, D.J. 1991. Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil136, 95–102.

    Article  Google Scholar 

  • Koch, J.R., Creelman, R.A., Eshita, S.M., Seskar, M., Mullet, J.E., and Davis, K.R. 2000. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol.123, 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Kpomblekou, K. and Tabatabai, M.A. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci.158, 442–453.

    Article  Google Scholar 

  • Lucy, M., Reed, E., and Glick, B.R. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek86, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol.63, 541–556.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, F.A., Aldesuquy, H.S., and Hamedo, H.A. 1994. Studies on plant growth regulators and enzymes production by some bacteria. Qatar. Univ. Sci. J.14, 281–288.

    CAS  Google Scholar 

  • Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganism. FEMS Microbiol. Lett.170, 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal, C.S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., and Verma, D. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett.182, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N.P., and Jones, J.D.G. 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol.18, 650–655.

    Article  PubMed  CAS  Google Scholar 

  • Pozo, M.J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol.10, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Q.G., Rose, P.A., Abrams, G.D., Taylor, D.C., Abrams, S.R., and Cutler, A.J. 1998. Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol.117, 979–987.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv.17, 319–339.

    Article  PubMed  CAS  Google Scholar 

  • Şahin, F., Çakmakçi, R., and Kantar, F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil265, 123–129.

    Article  Google Scholar 

  • Sambrook, J. and Russel, D.W. 2001. Molecular Cloning, (third ed.), Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Seskar, M., Shulaev, V., and Raskin, I. 1998. Endogenous methysalicylate in pathogen-inoculated tobacco plants. Plant Physiol.116, 387–392.

    Article  CAS  Google Scholar 

  • Shoebitz, M., Ribaudo, C.M., Pardo, M.A., Cantore, M.L., Ciampi, L., and Curá, J.A. 2009. Plant growth-promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol. Biochem.41, 1768–1774.

    Article  CAS  Google Scholar 

  • Song, O.R., Lee, S.J., Lee, Y.S., Lee, S.C., Kim, K.K., and Choi, Y.L. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol.39, 151–156.

    Article  Google Scholar 

  • Sturz, A.V., Christie, B.R., and Novak, J. 2000. Bacterial endophytes: potential role in developing sustainable system of crop production. Crit. Rev. Plant Sci.19, 1–30.

    Article  Google Scholar 

  • Sturz, A.V. and Nowak, J. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol.15, 183–190.

    Article  Google Scholar 

  • Yang, L., Xie, J., Jiang, D., Fu, Y., Li, G., and Lin, F. 2008. Antifungal substances produced by Penicillium oxalicum strain PY-1-potential antibiotics against plant pathogenic fungi. World J. Microbiol. Biotechnol.24, 909–915.

    Article  CAS  Google Scholar 

  • Yanni, Y.G., Rizk, R.Y., Abd El-Fattah, F.K., Squartini, A., Corich, V., Giacomini, A., de Bruijn, F., Rademaker, J., Maya-Flores, J., Ostrom, P., andet al. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol.28, 845–870.

    CAS  Google Scholar 

  • Zaidi, S., Usmani, S., Singh, B.R., and Musarrat, J. 2008. Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere64, 991–997.

    Article  Google Scholar 

  • Zhang, S., Reddy, M.S., and Kloepper, J.W. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth-promotion and systemic disease protection by PGPR strain 90-166. Plant Soil262, 277–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Additional information

These authors contributed equally to the work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SM., Khan, A.L., Hamayun, M. et al. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol. 50, 902–909 (2012). https://doi.org/10.1007/s12275-012-2273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2273-4

Keywords

Navigation