Journal of Microbiology

, Volume 50, Issue 3, pp 374–379 | Cite as

Antioxidant capacity of novel pigments from an Antarctic bacterium

  • Daniela N. Correa-Llantén
  • Maximiliano J. Amenábar
  • Jenny M. Blamey


In Antarctica microorganisms are exposed to several conditions that trigger the generation of reactive oxygen species, such as high UV radiation. Under these conditions they must have an important antioxidant defense system in order to prevent oxidative damage. One of these defenses are pigments which are part of the non-enzymatic antioxidant mechanisms. In this work we focused on the antioxidant capacity of pigments from an Antarctic microorganism belonging to Pedobacter genus. This microorganism produces different types of pigments which belong to the carotenoids group. The antioxidant capacity of a mix of pigments was analyzed by three different methods: 1,1-diphenyl-2-picrylhydrazyl, ROS detection and oxygen electrode. The results obtained from these approaches indicate that the mix of pigments has a strong antioxidant capacity. The oxidative damage induced by UVB exposure to liposomes was also analyzed. Intercalated pigments within the liposomes improved its resistance to lipid peroxidation. Based on the analysis carried out along this research we conclude that the antioxidant properties of the mix of pigments protect this bacterium against oxidative damage. These properties make this mix of pigments a powerful antioxidant mixture with potential biotechnological applications.


ROS antioxidant capacity assays liposomes Antarctica pigments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2012_2029_MOESM1_ESM.pdf (176 kb)
Supplementary material, approximately 175 KB.


  1. Asker, D. and Ohta, Y. 1999. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioeng.8, 617–621.CrossRefGoogle Scholar
  2. Bergey, D.H., Holt, J., Krieg, N., and Sneath, P. 1994. Bergey’s manual of determinative bacteriology. 9th (ed.). Lippincott Williams & Wilkins.Google Scholar
  3. Bondet, V., Brand-Williams, W., and Berset, C. 1997. Kinetics and mechanisms of antioxidant activity using the DPPH·free radical method. Food Sci. Technol.330, 609–615.Google Scholar
  4. Brand-Williams, W., Cuvelier, M., and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol.28, 25–30.Google Scholar
  5. Briviba, K., Klotz, L., and Sies, H. 1997. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol. Chem.378, 1259–1265.PubMedGoogle Scholar
  6. Carpenter, E.J., Lin, S., and Capone, D.G. 2000. Bacterial activity in south pole snow. Appl. Environ. Microbiol.66, 4514–4517.PubMedCrossRefGoogle Scholar
  7. Chappell, J.B. 1964. The oxidation of citrate isocitrate and cis-aconitate by isolated mitochondria. Biochem. J.90, 225–237.PubMedGoogle Scholar
  8. Chattopadhyay, M.K., Jagannadham, M.V., Vairamani, M., and Shivaji, S. 1997. Carotenoid pigments of a antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun.239, 85–90.PubMedCrossRefGoogle Scholar
  9. Chintalapati, S., Kiran, M.D., and Shiva, I.S. 2004. Role of membrane lipid fatty acids in cold adaptation. Cell Mol. Biol.50, 631–642.PubMedGoogle Scholar
  10. Cubillos, M., Lissi, E., and Abuin, E. 2000. Kinetics of lipid peroxidation in compartmentalized systems initiated by a water-soluble free radical source. Chem. Phys. Lipids104, 49–56.PubMedCrossRefGoogle Scholar
  11. De Rosso, V.V. and Mercadante, A.Z. 2007. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agric. Food Chem.55, 5062–5072.PubMedCrossRefGoogle Scholar
  12. Dundas, I.D. and Larsen, H. 1962. The physiological role of the carotenoid pigments of Halobacterium salinarium. Arch. Microbiol.44, 233–239.Google Scholar
  13. Estevez, M.S., Malanga, G., and Puntarulo, S. 2001. UV-B effects on Antarctic Chlorella sp. cells. J. Photochem. Photobiol.62, 19–25.CrossRefGoogle Scholar
  14. Feller, G. and Gerday, C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol.1, 200–208.PubMedCrossRefGoogle Scholar
  15. Fong, N.J., Burgess, M.L., Barrow, K.D., and Glenn, D.R. 2001. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol.56, 750–756.PubMedCrossRefGoogle Scholar
  16. Friedmann, E.I. 1982. Endolithic microorganisms in the Antarctic cold desert. Science215, 1045–1053.PubMedCrossRefGoogle Scholar
  17. Gochnauer, M.B., Kushwaha, S.C., Kates, M., and Kushner, D.J. 1972. Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria. Arch. Microbiol.84, 339–349.Google Scholar
  18. Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol.141, 312–322.PubMedCrossRefGoogle Scholar
  19. Imlay, J. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol.57, 395–418.PubMedCrossRefGoogle Scholar
  20. Jagannadham, M.V., Rao, V.J., and Shivaji, S. 1991. The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J. Bacteriol.173, 7911–7917.PubMedGoogle Scholar
  21. Johnson, J.L. 1991. Isolation and purification of nucleic acids. pp. 1–19. In Stackebrandt, E. and Goodfellow, M. (eds), Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, Chichester, UK.Google Scholar
  22. Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol.26, 211–219.Google Scholar
  23. Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev.39, 144–167.PubMedGoogle Scholar
  24. Reysenbach, A.L. 2001. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol.9, 79–86.PubMedCrossRefGoogle Scholar
  25. Rodriguez-Amaya, D.B., Raymundo, L.C., Lee, T.C., Simpson, K.L., and Chichester, C.O. 1976. Carotenoid pigment changes in ripening Momordica charantia fruits. Ann. Bot.40, 615–624.Google Scholar
  26. Smith, M.C., Prezelin, B.B., Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T., Karentz, D., Macintyre, S., Matlick, H.A., Menzies, D., andet al. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. Science255, 952–959.PubMedCrossRefGoogle Scholar
  27. Sujak, A., Gabrielska, J., Grudzecki, W., Borc, R., Mazurek, P., and Gruszecki, W.I. 1999. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch. Biochem. Biophys.371, 301–307.PubMedCrossRefGoogle Scholar
  28. Suresh, P., Ghosh, M., Pulicherla, K.K., and Sambasiva Rao, K.R.S. 2011. Cold active enzymes from the marine psychrophiles: Biotechnological perspective. Adv. Biotech10, 16–20.Google Scholar
  29. Tanner, M.A., Coleman, W.J., Yang, M.M., and Youvan, D.C. 2000. Complex microbial communities inhabiting sulfide-rich black mud from marine coastal environments. Biotech. et alia8, 1–16.Google Scholar
  30. Wu, H., Gao, K., Villafane, V.E., Watanabe, T., and Helbling, E.W. 2005. Effects of solar UV radiation on morphology and photosynthesis of filamentous Cyanobacterium. Appl. Environ. Microbiol. 71, 5004–5013.PubMedCrossRefGoogle Scholar
  31. Zhang, D.H., Lee, Y.K., Ng, M.L., and Phang, S.M. 1997. Composition and accumulation of secondary carotenoids in Chorococcum sp. J. Appl. Phycol.9, 147–155.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela N. Correa-Llantén
    • 1
    • 2
  • Maximiliano J. Amenábar
    • 1
  • Jenny M. Blamey
    • 1
  1. 1.Scientific and Cultural Bioscience FoundationSantiagoChile
  2. 2.Doctorate of BiotechnologyUniversity of Santiago of ChileSantiagoChile

Personalised recommendations