Skip to main content

Paenibacillus xylaniclasticus sp. nov., a xylanolytic-cellulolytic bacterium isolated from sludge in an anaerobic digester

Abstract

A mesophilic, facultative, anaerobic, xylanolytic-cellulolytic bacterium, TW1T, was isolated from sludge in an anaerobic digester fed with pineapple waste. Cells stained Gram-positive, were spore-forming, and had the morphology of straight to slightly curved rods. Growth was observed in the temperature range of 30 to 50°C (optimum 37°C) and the pH range of 6.0 to 7.5 (optimum pH 7.0) under aerobic and anaerobic conditions. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The predominant isoprenoid quinone was menaquinone with seven isoprene units (MK-7). Anteiso-C15:0, iso-C16:0, anteiso-C17:0, and C16:0 were the predominant cellular fatty acids. The G+C content of the DNA was 49.5 mol%. A phylogenetic analysis based on 16S rRNA showed that strain TW1T belonged within the genus Paenibacillus and was closely related to Paenibacillus cellulosilyticus LMG 22232T, P. curdlanolyticus KCTC 3759T, and P. kobensis KCTC 3761T with 97.7, 97.5, and 97.3% sequence similarity, respectively. The DNA-DNA hybridization values between the isolate and type strains of P. cellulosilyticus LMG 22232T, P. curdlanolyticus KCTC 3759T, and P. kobensis KCTC 3761T were found to be 18.6, 18.3, and 18.0%, respectively. The protein and xylanase patterns of strain TW1T were quite different from those of the type strains of closely related Paenibacillus species. On the basis of DNA-DNA relatedness and phenotypic analyses, phylogenetic data and the enzymatic pattern presented in this study, strain TW1T should be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus xylaniclasticus sp. nov. is proposed. The type strain is TW1T (=NBRC 106381T =KCTC 13719T =TISTR 1914T).

This is a preview of subscription content, access via your institution.

References

  • Baik, K.S., Choe, H.N., Park, S.C., Kim, E.M., and Seong, C.N. 2011. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int. J. Syst. Evol. Microbiol.61, 2763–2768.

    PubMed  Article  CAS  Google Scholar 

  • Barrow, G.L. and Feltham, R.K.A. 1993. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. pp. 331. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Berg, B., von Hofstan, B., and Pettersson, G. 1972. Growth and cellulase formation by Celluvibrio fulvus. J. Appl. Bacteriol.35, 201–214.

    PubMed  Article  CAS  Google Scholar 

  • Bhat, M.K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv.18, 355–383.

    PubMed  Article  CAS  Google Scholar 

  • Bozzola, J.J. and Russell, L.D. 1999. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed. pp. 670. Jones and Bartlett Publishers, Boston, M.A., USA.

    Google Scholar 

  • Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261.

    PubMed  Article  CAS  Google Scholar 

  • Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternation to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol.39, 224–229.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791.

    Article  Google Scholar 

  • Kanzawa, Y., Harada, A., Takeuchi, M., Yokota, A., and Harada, T. 1995. Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int. J. Syst. Bacteriol.45, 515–521.

    PubMed  Article  CAS  Google Scholar 

  • Khianngam, S., Akaracharanya, A., Tanasupawat, S., Lee, K.C., and Lee, J.S. 2009. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol.59, 564–568.

    PubMed  Article  CAS  Google Scholar 

  • Khianngam, S., Tanasupawat, S., Akaracharanya, A., Kim, K.K., Lee, K.C., and Lee, J.S. 2011. Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int. J. Syst. Evol. Microbiol.61, 160–164.

    PubMed  Article  CAS  Google Scholar 

  • Kim, B.C., Lee, K.H., Kim, M.N., Kim, E.M., Rhee, M.S., Kwon, O.Y., and Shin, K.S. 2009. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora. J. Microbiol.47, 530–535.

    PubMed  Article  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16, 111–120.

    PubMed  Article  CAS  Google Scholar 

  • Kohring, S., Wiegel, J., and Mayer, F. 1990. Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl. Environ. Microbiol.56, 3798–3804.

    PubMed  CAS  Google Scholar 

  • Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol.19, 161–207.

    Article  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.

    PubMed  Article  CAS  Google Scholar 

  • Lee, J.C. and Yoon, K.H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol.58, 612–616.

    PubMed  Article  CAS  Google Scholar 

  • Ljungdahl, L.G. and Eriksson, K. 1985. Ecology of microbial cellulose degradation. pp. 237–299. In Marshall, K.C. (ed.), VIII. Advances in Microbial Ecology-1985. Plenum Press, New York, N.Y., USA.

    Chapter  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275.

    PubMed  CAS  Google Scholar 

  • Minnikin, D.E., Patel, P.V., Alshamaony, L., and Goodfellow, M. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol.27, 104–117.

    Article  CAS  Google Scholar 

  • Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem.153, 375–380.

    CAS  Google Scholar 

  • Oh, H.W., Kim, B.C., Lee, K.H., Kim, D.Y., Park, D.S., Park, H.M., and Bae, K.S. 2008. Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis. J. Microbiol.46, 530–534.

    PubMed  Article  CAS  Google Scholar 

  • Park, M.J., Kim, H.B., An, D.S., Yang, H.C., Oh, S.T., Chung, H.J., and Yang, D.C. 2007. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int. J. Syst. Evol. Microbiol.57, 146–150.

    PubMed  Article  CAS  Google Scholar 

  • Pason, P., Kyu, K.L., and Ratanakhanokchai, K. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol.72, 2483–2490.

    PubMed  Article  CAS  Google Scholar 

  • Patrick, M.F., Champagen, P., Cunningham, M.F., and Whitney, R.A. 2010. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol.101, 8915–8922.

    Article  Google Scholar 

  • Phitsuwan, P., Tachaapaikoon, C., Kosugi, A., Mori, Y., Kyu, K.L., and Ratanakhanokchai, K. 2010. A cellulolytic and xylanolytic enzyme complex from an alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14. J. Microbiol. Biotechnol.20, 893–903.

    PubMed  Article  CAS  Google Scholar 

  • Rivas, R., García-Fraile, P., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2006. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol. Microbiol.56, 2777–2781.

    PubMed  Article  CAS  Google Scholar 

  • Saito, H. and Miura, K.I. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta72, 619–629.

    PubMed  Article  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sánchez, M.M., Fritze, D., Blanco, A., Spröer, C., Tindall, B.J., Schumann, P., Kroppenstedt, R.M., Diaz, P., and Pastor, F.I.J. 2005. Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int. J. Syst. Evol. Microbiol.55, 935–939.

    PubMed  Article  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Schaeffer, A.B. and Fulton, M. 1933. A simplified method of staining endospores. Science77, 194.

    PubMed  Article  CAS  Google Scholar 

  • Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.

    PubMed  Article  CAS  Google Scholar 

  • Singleton, P. 2004. Bacteria in Biology, Biotechnology and Medicine, 6th ed. pp. 570. John Wiley and Sons Ltd., West Sussex, England.

    Google Scholar 

  • Subaramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol.22, 33–64.

    Article  Google Scholar 

  • Tamaoka, J. and Komagata, K. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett.25, 125–128.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.24, 1596–1599.

    PubMed  Article  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25, 4876–4882.

    PubMed  Article  CAS  Google Scholar 

  • Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol.31, 575–580.

    PubMed  CAS  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., andet al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int. J. Syst. Bacteriol.37, 463–464.

    Article  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol.173, 697–703.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.H.P., Himmel, M.E., and Mielenz, J.R. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv.24, 452–481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakrit Tachaapaikoon.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tachaapaikoon, C., Tanasupawat, S., Pason, P. et al. Paenibacillus xylaniclasticus sp. nov., a xylanolytic-cellulolytic bacterium isolated from sludge in an anaerobic digester. J Microbiol. 50, 394–400 (2012). https://doi.org/10.1007/s12275-012-1480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1480-3

Keywords

  • anaerobic digester
  • facultative anaerobic bacterium
  • Paenibacillus xylaniclasticus
  • xylanase
  • xylanolytic-cellulolytic bacterium