Baik, K.S., Choe, H.N., Park, S.C., Kim, E.M., and Seong, C.N. 2011. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int. J. Syst. Evol. Microbiol.61, 2763–2768.
PubMed
Article
CAS
Google Scholar
Barrow, G.L. and Feltham, R.K.A. 1993. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. pp. 331. Cambridge University Press, Cambridge, UK.
Book
Google Scholar
Berg, B., von Hofstan, B., and Pettersson, G. 1972. Growth and cellulase formation by Celluvibrio fulvus. J. Appl. Bacteriol.35, 201–214.
PubMed
Article
CAS
Google Scholar
Bhat, M.K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv.18, 355–383.
PubMed
Article
CAS
Google Scholar
Bozzola, J.J. and Russell, L.D. 1999. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed. pp. 670. Jones and Bartlett Publishers, Boston, M.A., USA.
Google Scholar
Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261.
PubMed
Article
CAS
Google Scholar
Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternation to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol.39, 224–229.
Article
Google Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791.
Article
Google Scholar
Kanzawa, Y., Harada, A., Takeuchi, M., Yokota, A., and Harada, T. 1995. Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int. J. Syst. Bacteriol.45, 515–521.
PubMed
Article
CAS
Google Scholar
Khianngam, S., Akaracharanya, A., Tanasupawat, S., Lee, K.C., and Lee, J.S. 2009. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol.59, 564–568.
PubMed
Article
CAS
Google Scholar
Khianngam, S., Tanasupawat, S., Akaracharanya, A., Kim, K.K., Lee, K.C., and Lee, J.S. 2011. Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int. J. Syst. Evol. Microbiol.61, 160–164.
PubMed
Article
CAS
Google Scholar
Kim, B.C., Lee, K.H., Kim, M.N., Kim, E.M., Rhee, M.S., Kwon, O.Y., and Shin, K.S. 2009. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora. J. Microbiol.47, 530–535.
PubMed
Article
CAS
Google Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16, 111–120.
PubMed
Article
CAS
Google Scholar
Kohring, S., Wiegel, J., and Mayer, F. 1990. Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl. Environ. Microbiol.56, 3798–3804.
PubMed
CAS
Google Scholar
Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol.19, 161–207.
Article
CAS
Google Scholar
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.
PubMed
Article
CAS
Google Scholar
Lee, J.C. and Yoon, K.H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol.58, 612–616.
PubMed
Article
CAS
Google Scholar
Ljungdahl, L.G. and Eriksson, K. 1985. Ecology of microbial cellulose degradation. pp. 237–299. In Marshall, K.C. (ed.), VIII. Advances in Microbial Ecology-1985. Plenum Press, New York, N.Y., USA.
Chapter
Google Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275.
PubMed
CAS
Google Scholar
Minnikin, D.E., Patel, P.V., Alshamaony, L., and Goodfellow, M. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol.27, 104–117.
Article
CAS
Google Scholar
Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem.153, 375–380.
CAS
Google Scholar
Oh, H.W., Kim, B.C., Lee, K.H., Kim, D.Y., Park, D.S., Park, H.M., and Bae, K.S. 2008. Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis. J. Microbiol.46, 530–534.
PubMed
Article
CAS
Google Scholar
Park, M.J., Kim, H.B., An, D.S., Yang, H.C., Oh, S.T., Chung, H.J., and Yang, D.C. 2007. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int. J. Syst. Evol. Microbiol.57, 146–150.
PubMed
Article
CAS
Google Scholar
Pason, P., Kyu, K.L., and Ratanakhanokchai, K. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol.72, 2483–2490.
PubMed
Article
CAS
Google Scholar
Patrick, M.F., Champagen, P., Cunningham, M.F., and Whitney, R.A. 2010. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol.101, 8915–8922.
Article
Google Scholar
Phitsuwan, P., Tachaapaikoon, C., Kosugi, A., Mori, Y., Kyu, K.L., and Ratanakhanokchai, K. 2010. A cellulolytic and xylanolytic enzyme complex from an alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14. J. Microbiol. Biotechnol.20, 893–903.
PubMed
Article
CAS
Google Scholar
Rivas, R., García-Fraile, P., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2006. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol. Microbiol.56, 2777–2781.
PubMed
Article
CAS
Google Scholar
Saito, H. and Miura, K.I. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta72, 619–629.
PubMed
Article
CAS
Google Scholar
Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.
PubMed
CAS
Google Scholar
Sánchez, M.M., Fritze, D., Blanco, A., Spröer, C., Tindall, B.J., Schumann, P., Kroppenstedt, R.M., Diaz, P., and Pastor, F.I.J. 2005. Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int. J. Syst. Evol. Microbiol.55, 935–939.
PubMed
Article
Google Scholar
Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.
Google Scholar
Schaeffer, A.B. and Fulton, M. 1933. A simplified method of staining endospores. Science77, 194.
PubMed
Article
CAS
Google Scholar
Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.
PubMed
Article
CAS
Google Scholar
Singleton, P. 2004. Bacteria in Biology, Biotechnology and Medicine, 6th ed. pp. 570. John Wiley and Sons Ltd., West Sussex, England.
Google Scholar
Subaramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol.22, 33–64.
Article
Google Scholar
Tamaoka, J. and Komagata, K. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett.25, 125–128.
Article
CAS
Google Scholar
Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.24, 1596–1599.
PubMed
Article
CAS
Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25, 4876–4882.
PubMed
Article
CAS
Google Scholar
Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol.31, 575–580.
PubMed
CAS
Google Scholar
Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., andet al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int. J. Syst. Bacteriol.37, 463–464.
Article
Google Scholar
Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol.173, 697–703.
PubMed
CAS
Google Scholar
Zhang, Y.H.P., Himmel, M.E., and Mielenz, J.R. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv.24, 452–481.
Article
CAS
Google Scholar