Skip to main content

Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate

Abstact

Thirty-two isolates were obtained from wheat rhizosphere by wheat germ agglutinin (WGA) labeled with fluorescein isothiocyanate (FITC). Most isolates were able to produce indole acetic acid (65.6%) and siderophores (59.3%), as well as exhibited phosphate solubilization (96.8%). Fourteen isolates displayed three plant growth-promoting traits. Among these strains, two phosphate-dissolving ones, WS29 and WS31, were evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum Wan33). Strain WS29 and WS31 significantly promoted the development of lateral roots by 34.9% and 27.6%, as well as increased the root dry weight by 25.0% and 25.6%, respectively, compared to those of the control. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, both isolates were determined to belong to the genus Bacillus. The proportion of isolates showing the properties of plant growth-promoting rhizobacteria (PGPR) was higher than in previous reports. The efficiency of the isolation of PGPR strains was also greatly increased by WGA labeled with FITC. The present study indicated that WGA could be used as an effective tool for isolating PGPR strains with high affinity to host plants from wheat roots. The proposed approach could facilitate research on biofertilizers or biocontrol agents.

This is a preview of subscription content, access via your institution.

References

  • Abbasi, M.K., Sharif, S., Kazmi, M., Sultan, T., and Aslam, M. 2011. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst. 145, 159–168.

    Article  Google Scholar 

  • Alagawadi, A. and Gaur, A. 1988. Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105, 241–246.

    Article  Google Scholar 

  • Antonyuk, L.P. and Evseeva, N.V. 2006. Wheat lectin as a factor in plant-microbial communication and a stress response protein. Microbiology 75, 470–475.

    Article  CAS  Google Scholar 

  • Antonyuk, L.P. and Ignatov, V.V. 2001. The role of wheat germ agglutinin in plant-bacteria interactions: A hypothesis and the evidence in its support. Russ. J. Plant. Physl. 48, 364–369.

    Article  CAS  Google Scholar 

  • Aub, J.C., Sanford, B.H., and Wang, L.H. 1965. Reactions of normal and leukemic cell surfaces to a wheat germ agglutinin. Proc. Natl. Acad. Sci. USA 54, 400.

    PubMed  Article  CAS  Google Scholar 

  • Bano, N. and Musarrat, J. 2003. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr. Microbiol. 46, 0324–0328.

    Article  CAS  Google Scholar 

  • Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16, 729–770.

    Article  CAS  Google Scholar 

  • Behbahani, M. 2010. Investigation of biological behavior and colonization ability of Iranian indigenous phosphate solubilizing bacteria. Sci. Hortic. 124, 393–399.

    Article  CAS  Google Scholar 

  • Bohlool, B.B. and Schmidt, E.L. 1974. Lectins: A possible basis for specificity in the rhizobium-legume root nodule symbiosis. Science 185, 269–271.

    PubMed  Article  CAS  Google Scholar 

  • Burger, M.M. and Goldberg, A.R. 1967. Identification of a tumor-specific determinant on neoplastic cell surfaces. Proc. Natl. Acad. Sci. USA 57, 359.

    PubMed  Article  CAS  Google Scholar 

  • Cattelan, A., Hartel, P., and Fuhrmann, J. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63, 1670.

    Article  CAS  Google Scholar 

  • Chopade, B.A., Sachdev, D.P., Chaudhari, H.G., Kasture, V.M., and Dhavale, D.D. 2009. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian. J. Exp. Biol. 47, 993–1000.

    PubMed  Google Scholar 

  • De Hoff, P., Brill, L., and Hirsch, A. 2009. Plant lectins: the ties that bind in root symbiosis and plant defense. Mol. Genet. Genom. 282, 1–15.

    Article  Google Scholar 

  • Del Gallo, M. and Fendrik, I. 1994. The rhizosphere and Azospirillum. pp. 57–75. In Okon, Y. (ed.) Azospirillum/Plant Associations. C.R.C. Press, Boca Raton, FL, USA.

    Google Scholar 

  • Dhandapani. 2011. Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soils from southern India. Int. J. Soil Sci. 6, 134–141.

    Article  Google Scholar 

  • Ding, Y., Wang, J., Liu, Y., and Chen, S. 2005. Isolation and identification of nitrogen-fixing Bacilli from plant rhizospheres in Beijing region. J. Appl. Microbiol. 99, 1271–1281.

    PubMed  Article  CAS  Google Scholar 

  • Fischer, S.E., Fischer, S.I., Magris, S., and Mori, G.B. 2007. Isolation and characterization of bacteria from the rhizosphere of wheat. World J. Microbiol. Biotechnol. 23, 895–903.

    Article  CAS  Google Scholar 

  • Flores-Vargas, R.D. and O’Hara, G.W. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J. Appl. Microbiol. 100, 946–954.

    PubMed  Article  CAS  Google Scholar 

  • Germida, J.J., Siciliano, S.D., Renato de Freitas, J., and Seib, A.M. 1998. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26, 43–50.

    Article  CAS  Google Scholar 

  • Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Gordon, S.A. and Weber, R.P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192.

    PubMed  Article  CAS  Google Scholar 

  • Gull, M., Hafeez, F.Y., Saleem, M., and Malik, K.A. 2004. Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust. J. Exp. Agr. 44, 623–628.

    Article  CAS  Google Scholar 

  • Hafeez, F.Y., Yasmin, S., Ariani, D., Rahman, M., Zafar, Y., and Malik, K.A. 2006. Plant growth-promoting bacteria as biofertilizer. Agron. Sustain. Det. 26, 143–150.

    Article  CAS  Google Scholar 

  • Hartmann, A., Schmid, M., Tuinen, D., and Berg, G. 2009. Plant-driven selection of microbes. Plant Soil 321, 235–257.

    Article  CAS  Google Scholar 

  • Hoagland, D.R. and Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 347, 4–31.

    Google Scholar 

  • Holt, J.G., Kreig, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, USA.

    Google Scholar 

  • Inbar, M. and Sachs, L. 1969. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc. Natl. Acad. Sci. USA 63, 1418.

    PubMed  Article  CAS  Google Scholar 

  • Johnsson, L., Hökeberg, M., and Gerhardson, B. 1998. Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur. J. Plant Pathol. 104, 701–711.

    Article  Google Scholar 

  • Khalid, A., Arshad, M., and Zahir, Z.A. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473–480.

    PubMed  Article  CAS  Google Scholar 

  • Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., and Srivastava, R. 2010. Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J. Microbiol. Biotechnol. 27, 1625–1632.

    Article  Google Scholar 

  • Laguerre, G., Allard, M.-R., Revoy, F., and Amarger, N. 1994. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60, 56–63.

    PubMed  CAS  Google Scholar 

  • Levine, D., Kaplan, M.J., and Greenaway, P.J. 1972. The purification and characterization of wheat-germ agglutinin. Biochem. J. 129, 847.

    PubMed  CAS  Google Scholar 

  • Mishkind, M., Keegstra, K., and Palevitz, B.A. 1980. Distribution of wheat germ agglutinin in young wheat plants. Plant Physiol. 66, 950–955.

    PubMed  Article  CAS  Google Scholar 

  • Moreira, R.A., Ainouz, I.L., Oliveira, J.T.A., and Cavada, B.S. 1991. Plant lectins, chemical and biological aspects. Mem. Inst. Oswaldo. Cruz. 86, 211–218.

    Article  Google Scholar 

  • Nathan, S. 2008. Lectins: past, present and future. Biochem. Soc. Trans. 36, 1457–1460.

    Article  Google Scholar 

  • Olyunina, L., Matskova, Y., Goncharova, T., and Gushina, Y. 2009. Evaluation of thermal resistance of Azotobacter chroococcum 66 using atomic force microscopy. Appl. Biochem. Microb. 45, 38–42.

    Article  CAS  Google Scholar 

  • Park, J.H., Bolan, N., Megharaj, M., and Naidu, R. 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J. Hazard. Mater. 185, 829–836.

    PubMed  Article  CAS  Google Scholar 

  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., and Sa, T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160, 127–133.

    PubMed  Article  CAS  Google Scholar 

  • Peumans, W.J. and Damme, E.J.M.V. 1995. Lectins as plant defense proteins. Plant Physiol. 109, 347–352.

    PubMed  Article  CAS  Google Scholar 

  • Pistole, T.G. 1981. Interaction of bacteria and fungi with lectins and lectin-like substances. Annu. Rev. Microbiol. 35, 85–112.

    PubMed  Article  CAS  Google Scholar 

  • Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    PubMed  Article  CAS  Google Scholar 

  • Sela, B.A., Lis, H., Sharon, N., and Sachs, L. 1970. Different locations of carbohydrate-containing sites in the surface membrane of normal and transformed mammalian cells. J. Memb. Biol. 3, 267–279.

    Article  CAS  Google Scholar 

  • Senthilkumar, M., Govindasamy, V., and Annapurna, K. 2007. Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr. Microbiol. 55, 25–29.

    PubMed  Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    PubMed  Article  CAS  Google Scholar 

  • Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586.

    Article  CAS  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    PubMed  CAS  Google Scholar 

  • Yegorenkova, I.V., Konnova, S.A., Sachuk, V.N., and Ignatov, V.V. 2001. Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil 231, 275–282.

    Article  CAS  Google Scholar 

  • Yu, X.M., Ai, C.X., Xin, L., and Zhou, G.F. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145.

    Article  Google Scholar 

  • Yuan, C.L., Mou, C.X., Wu, W.L., and Guo, Y.B. 2011. Effect of different fertilization treatments on indole-3-acetic acid producing bacteria in soil. J. Soils Sediments 11, 322–329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyun Tang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Liu, J., Meng, L. et al. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. J Microbiol. 50, 191–198 (2012). https://doi.org/10.1007/s12275-012-1472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1472-3

Keywords

  • PGPR
  • FITC-labeled WGA
  • Bacillus sp.