Abbasi, M.K., Sharif, S., Kazmi, M., Sultan, T., and Aslam, M. 2011. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst.
145, 159–168.
Article
Google Scholar
Alagawadi, A. and Gaur, A. 1988. Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil
105, 241–246.
Article
Google Scholar
Antonyuk, L.P. and Evseeva, N.V. 2006. Wheat lectin as a factor in plant-microbial communication and a stress response protein. Microbiology
75, 470–475.
Article
CAS
Google Scholar
Antonyuk, L.P. and Ignatov, V.V. 2001. The role of wheat germ agglutinin in plant-bacteria interactions: A hypothesis and the evidence in its support. Russ. J. Plant. Physl.
48, 364–369.
Article
CAS
Google Scholar
Aub, J.C., Sanford, B.H., and Wang, L.H. 1965. Reactions of normal and leukemic cell surfaces to a wheat germ agglutinin. Proc. Natl. Acad. Sci. USA
54, 400.
PubMed
Article
CAS
Google Scholar
Bano, N. and Musarrat, J. 2003. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr. Microbiol.
46, 0324–0328.
Article
CAS
Google Scholar
Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv.
16, 729–770.
Article
CAS
Google Scholar
Behbahani, M. 2010. Investigation of biological behavior and colonization ability of Iranian indigenous phosphate solubilizing bacteria. Sci. Hortic.
124, 393–399.
Article
CAS
Google Scholar
Bohlool, B.B. and Schmidt, E.L. 1974. Lectins: A possible basis for specificity in the rhizobium-legume root nodule symbiosis. Science
185, 269–271.
PubMed
Article
CAS
Google Scholar
Burger, M.M. and Goldberg, A.R. 1967. Identification of a tumor-specific determinant on neoplastic cell surfaces. Proc. Natl. Acad. Sci. USA
57, 359.
PubMed
Article
CAS
Google Scholar
Cattelan, A., Hartel, P., and Fuhrmann, J. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J.
63, 1670.
Article
CAS
Google Scholar
Chopade, B.A., Sachdev, D.P., Chaudhari, H.G., Kasture, V.M., and Dhavale, D.D. 2009. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian. J. Exp. Biol.
47, 993–1000.
PubMed
Google Scholar
De Hoff, P., Brill, L., and Hirsch, A. 2009. Plant lectins: the ties that bind in root symbiosis and plant defense. Mol. Genet. Genom.
282, 1–15.
Article
Google Scholar
Del Gallo, M. and Fendrik, I. 1994. The rhizosphere and Azospirillum. pp. 57–75. In Okon, Y. (ed.) Azospirillum/Plant Associations. C.R.C. Press, Boca Raton, FL, USA.
Google Scholar
Dhandapani. 2011. Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soils from southern India. Int. J. Soil Sci.
6, 134–141.
Article
Google Scholar
Ding, Y., Wang, J., Liu, Y., and Chen, S. 2005. Isolation and identification of nitrogen-fixing Bacilli from plant rhizospheres in Beijing region. J. Appl. Microbiol.
99, 1271–1281.
PubMed
Article
CAS
Google Scholar
Fischer, S.E., Fischer, S.I., Magris, S., and Mori, G.B. 2007. Isolation and characterization of bacteria from the rhizosphere of wheat. World J. Microbiol. Biotechnol.
23, 895–903.
Article
CAS
Google Scholar
Flores-Vargas, R.D. and O’Hara, G.W. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J. Appl. Microbiol.
100, 946–954.
PubMed
Article
CAS
Google Scholar
Germida, J.J., Siciliano, S.D., Renato de Freitas, J., and Seib, A.M. 1998. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol.
26, 43–50.
Article
CAS
Google Scholar
Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol.
41, 109–117.
Article
CAS
Google Scholar
Gordon, S.A. and Weber, R.P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol.
26, 192.
PubMed
Article
CAS
Google Scholar
Gull, M., Hafeez, F.Y., Saleem, M., and Malik, K.A. 2004. Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust. J. Exp. Agr.
44, 623–628.
Article
CAS
Google Scholar
Hafeez, F.Y., Yasmin, S., Ariani, D., Rahman, M., Zafar, Y., and Malik, K.A. 2006. Plant growth-promoting bacteria as biofertilizer. Agron. Sustain. Det.
26, 143–150.
Article
CAS
Google Scholar
Hartmann, A., Schmid, M., Tuinen, D., and Berg, G. 2009. Plant-driven selection of microbes. Plant Soil
321, 235–257.
Article
CAS
Google Scholar
Hoagland, D.R. and Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn.
347, 4–31.
Google Scholar
Holt, J.G., Kreig, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, USA.
Google Scholar
Inbar, M. and Sachs, L. 1969. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc. Natl. Acad. Sci. USA
63, 1418.
PubMed
Article
CAS
Google Scholar
Johnsson, L., Hökeberg, M., and Gerhardson, B. 1998. Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur. J. Plant Pathol.
104, 701–711.
Article
Google Scholar
Khalid, A., Arshad, M., and Zahir, Z.A. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol.
96, 473–480.
PubMed
Article
CAS
Google Scholar
Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., and Srivastava, R. 2010. Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J. Microbiol. Biotechnol.
27, 1625–1632.
Article
Google Scholar
Laguerre, G., Allard, M.-R., Revoy, F., and Amarger, N. 1994. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol.
60, 56–63.
PubMed
CAS
Google Scholar
Levine, D., Kaplan, M.J., and Greenaway, P.J. 1972. The purification and characterization of wheat-germ agglutinin. Biochem. J.
129, 847.
PubMed
CAS
Google Scholar
Mishkind, M., Keegstra, K., and Palevitz, B.A. 1980. Distribution of wheat germ agglutinin in young wheat plants. Plant Physiol.
66, 950–955.
PubMed
Article
CAS
Google Scholar
Moreira, R.A., Ainouz, I.L., Oliveira, J.T.A., and Cavada, B.S. 1991. Plant lectins, chemical and biological aspects. Mem. Inst. Oswaldo. Cruz.
86, 211–218.
Article
Google Scholar
Nathan, S. 2008. Lectins: past, present and future. Biochem. Soc. Trans.
36, 1457–1460.
Article
Google Scholar
Olyunina, L., Matskova, Y., Goncharova, T., and Gushina, Y. 2009. Evaluation of thermal resistance of Azotobacter chroococcum 66 using atomic force microscopy. Appl. Biochem. Microb.
45, 38–42.
Article
CAS
Google Scholar
Park, J.H., Bolan, N., Megharaj, M., and Naidu, R. 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J. Hazard. Mater.
185, 829–836.
PubMed
Article
CAS
Google Scholar
Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., and Sa, T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res.
160, 127–133.
PubMed
Article
CAS
Google Scholar
Peumans, W.J. and Damme, E.J.M.V. 1995. Lectins as plant defense proteins. Plant Physiol.
109, 347–352.
PubMed
Article
CAS
Google Scholar
Pistole, T.G. 1981. Interaction of bacteria and fungi with lectins and lectin-like substances. Annu. Rev. Microbiol.
35, 85–112.
PubMed
Article
CAS
Google Scholar
Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem.
160, 47–56.
PubMed
Article
CAS
Google Scholar
Sela, B.A., Lis, H., Sharon, N., and Sachs, L. 1970. Different locations of carbohydrate-containing sites in the surface membrane of normal and transformed mammalian cells. J. Memb. Biol.
3, 267–279.
Article
CAS
Google Scholar
Senthilkumar, M., Govindasamy, V., and Annapurna, K. 2007. Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr. Microbiol.
55, 25–29.
PubMed
Article
CAS
Google Scholar
Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol.
24, 1596–1599.
PubMed
Article
CAS
Google Scholar
Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil
255, 571–586.
Article
CAS
Google Scholar
Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol.
173, 697–703.
PubMed
CAS
Google Scholar
Yegorenkova, I.V., Konnova, S.A., Sachuk, V.N., and Ignatov, V.V. 2001. Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil
231, 275–282.
Article
CAS
Google Scholar
Yu, X.M., Ai, C.X., Xin, L., and Zhou, G.F. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol.
47, 138–145.
Article
Google Scholar
Yuan, C.L., Mou, C.X., Wu, W.L., and Guo, Y.B. 2011. Effect of different fertilization treatments on indole-3-acetic acid producing bacteria in soil. J. Soils Sediments
11, 322–329.
Article
CAS
Google Scholar